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ABSTRACT

We consider an interactive information retrieval task in which
the user is interested in finding several to many relevant
documents with minimal effort. Given an initial document
ranking, user interaction with the system produces relevance
feedback (RF) which the system then uses to revise the rank-
ing. This interactive process repeats until the user termi-
nates the search. To maximize accuracy relative to user
effort, we propose an active learning strategy. At each it-
eration, the document whose relevance is maximally uncer-
tain to the system is slotted high into the ranking in order
to obtain user feedback for it. Simulated feedback on the
Robust04 TREC collection shows our active learning ap-
proach dominates several standard RF baselines relative to
the amount of feedback provided by the user. Evaluation on
Robust04 under noisy feedback and on LETOR collections
further demonstrate the effectiveness of active learning, as
well as value of negative feedback in this task scenario.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Relevance
Feedback; 1.2.6 [Artificial Intelligence]: Learning

General Terms

Algorithms, Experimentation, Performance

Keywords

Relevance Feedback, Active learning, Personalized Search

1. INTRODUCTION

This paper presents an interactive information retrieval
(IR) task [14] based on iterative relevance feedback (RF) [20,
4]. Given an initial document ranking, the user interacts
with the system to explicitly or implicitly provide the system
with labeled feedback documents. In standard RF fashion,
the system then utilizes this feedback to generate an im-
proved ranking. However, our interaction model involves
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Figure 1: Task scenario and system architecture.

an iterative back-and-forth between user and system, pro-
viding the user a natural way to provide feedback and the
system with an opportunity to request targeted feedback to
improve ranking. User behavior is simulated via a simple
model of top-to-bottom search result browsing (§2). Active
learning [24, 13] is used to maximize system accuracy while
minimizing the amount of feedback required (§4). Figure 1
depicts our overall task scenario and system architecture.

Brandt et al. [3] recently described an interactive IR cre-
ating a dynamic ranking tree for user interaction. Ranking
is based on recommendations from the history of other users.
Radlinski and Joachims [17] also explore use of active learn-
ing to quickly learn the document ranking function, focusing
on estimating the general relevance measure (and ranking)
of documents based on clickthrough data from query logs.
Our work is more user-specific in personalizing the ranking
based for the current user’s interactions.

We investigate two active learning methods for selecting
the next document to slot high for feedback. The Simple
Margin method [24] picks the document lying closest to the
decision surface whose relevance is maximally uncertain. We
also propose an enhancement, Local Structure, which cap-
tures the idea that useful examples to label should also be far
from already labeled examples and near to other unlabeled
examples. We use Laplacian Score feature selection [10] to
prune the vocabulary for more tractable learning (§5).



Our iterative RF task scenario presents several challenges
to standard evaluation methodology typically used for ad
hoc retrieval and single-iteration RF (§6). To address these
challenges, we propose a paired approach of KeepAll and
TakeOut evaluation which differ in how feedback documents
are treated with regard to evaluation. Both strategies have
advantages and disadvantges. In tandem, they provide a
useful way to compare relative effectiveness of methods while
not having to exclude the full union of feedback documents
as typical with residual evaluation, something which can be
difficult to apply when relevant documents are limited.

Empirical evaluation is conducted on the Robust04 TREC
collection, as well as the LETOR 3.0 TD2003 and TD2004
collections [15] (§7). While we primarily assume relevance
feedback provided by the user is correct, as in traditional RF
settings, we also consider a noisy feedback setting in which
the user sometimes provides erroneous feedback. This is
simulated through simple false positive and negative rate
Bernoulli parameters. Active learning methods are com-
pared to standard RF baselines of Rocchio [20] and model-
based feedback [28] (§3). We also evaluate Rocchio using
positive-only feedback, and results show negative feedback
is quite valuable in this task scenario, something rarely seen
in prior work [26]. Overall, learning curves and average per-
formance show active learning methods dominate baseline
techniques, maximizing ranking accuracy for users relative
to the amount of user feedback provided.

A simple prototype version of our system is available on-
line* which reranks search results from Bing? using active
learning. The interface presents left and right views of search
results. The original ranking remains fixed in the left view,
while the right view is continually re-ordered based on user
feedback. Clicking search results in either views will open
the clicked page in a new tab, as well as re-order search
results in the view on the right.

Our paper is organized as follows. Our task scenario and
user behavior model is introduced in §2. §3 defines the base-
line RF methods we employ. Active learning methods are
presented in §4. §5 describes feature selection for dimension-
ality reduction. Evaluation methodology for iterative RF is
discussed in §6, and our evaluation of methods is presented
in §7. We conclude with discussion of future work in §8.

2. TASK SCENARIO AND USER MODEL

Imagine a user who is interested in finding several to many
relevant documents (with minimal effort). Given an initial
document ranking, user interaction with the system pro-
duces relevance feedback (explicitly or implicitly) which the
system then utilizes to improve the ranking. This interac-
tive process repeats iteratively until the user terminates the
search. In practice, we expect different information needs,
task situations, and users will drive different types of thresh-
olds for stopping. These might include a limited amount of
effort the user is willing to invest, a target number of relevant
documents to be found, or perhaps a target system accuracy
to achieve (e.g. for later use searching the collection as new
documents are added to it). Iteration also stops whenever
the set of relevant documents available for feedback is ex-
hausted. In all cases, the system goal is to maximize ranking
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accuracy for any amount of relevance feedback provided. In
other words, the system should maximize the learning curve.

We generate relevance feedback from a simple model of
user behavior. Given a document ranking, the user browses
the document ranking from top-to-bottom and clicks on the
first relevant document encountered. This interaction gener-
ates relevance feedback consisting of both one relevant docu-
ment (the one clicked) and a set of zero or more non-relevant
documents (those ranked above the relevant document). We
do not explicitly model the user’s stopping criterion for ter-
minating the search (evaluation in §7 will measure system
accuracy across varying amounts of user feedback).

Note that the user model just described assumes user feed-
back is always correct, similar to a traditional RF setting
with known relevant and non-relevant documents [4]. We
also consider a second, noisy model of user feedback (§7.3).
Such noise might arise in practice with either explicit or im-
plicit feedback due to the user’s misperceptions of relevance
prior to clicking or by simple clicking mistakes. This second
user model introduces two Bernoulli parameters, f, and f,
which control the user’s false positive and negative rates,
respectively. As the user browses each non-relevant docu-
ment, with probability f, he will mistakenly click on it to
indicate it as relevant. Similarly, whenever the user browses
a relevant document, with probability f, he will fail to click
on it and instead continue scanning down the results list,
providing incorrect negative feedback.

3. RELEVANCE FEEDBACK BASELINES

We evaluate three baseline RF methods for this iterative
feedback task: (1) Rocchio feedback [20], (2) Rocchio with
positive feedback only, and (3) model-based feedback (lan-
guage modeling paradigm) [28]. Since prior work has rarely
observed benefits from negative feedback [26], we were par-
ticularly interested in comparing the relative performance of
(1) and (2) for this task scenario.

Let D denote the document collection, Dy the set of un-
labeled documents, Dr documents with feedback, Dry pos-
itive feedback documents, and Dr_ the set of negative feed-
back documents. Let q and d denote the query and doc-
ument vectors. Superscript k represents the kth iteration.
S(d) represents d’s final score.

Rocchio [20] performs query expansion based on both pos-
itive and negative user feedback. Let * = aq0—|—(1—a)qlf‘71
denote linear interpolation between original query q° and
feedback vector q¥. Using term frequency representation
for q and d vectors, we compute q¥ by:
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The score of d in iteration k is then computed by cosine
similarity between the expanded query and document d’s
vector: S*(d) = cos(q®,d) = g - d.

Model-based feedback [28] incorporates only positive feed-
back into the language model. Let ©O¢, ©p, OF, and Og4 rep-
resent the model for query @, collection D, positive feedback
documents F', and given document d. Similar to Rocchio,
let @6 = a@% +(1—a)©% denote the updated query model
computed by linear interpolation of the original query model
and the feedback model. To limit the noise of the feedback
documents, feedback documents are assumed to be gener-
ated based on linear combination of feedback model and the



collection model (2). Let c¢(w,d) denote the frequency of
word w in document d. The feedback model is estimated by
maximum likelihood (ML) using the EM algorithm where
log p(D% , ©%) is computed by:

> > e(w,d)log (Ap(w|OF) + (1 - Np(w|en)) (2)
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We estimate the document model by ©4 = (1—7) “;—‘4—7 Op,
where smoothing parameter v mixes d’s ML estimate with
the collection model ©p. Document relevance to the query
is then measured by KL divergence: S*(d) = —D(05||0a).

4. ACTIVE LEARNING

To maximize ranking accuracy with respect to the amount
of user effort (i.e. relevance feedback) invested in training
the system, we propose an active learning strategy for uti-
lizing feedback. At the core of this active learning is super-
vised classification: learning to distinguish between relevant
and non-relevant classes given training data. Documents are
ranked in order of decreasing estimated relevance [19]. We
describe two active learning approaches, Simple Margin
and Local Structure, which we later evaluate (§7).

We adopt a support vector machine (SVM) [24] approach
to active learning. Training a linear SVM consists of solving
a quadratic optimization subject to linear inequality con-
straints. Optimization maximizes the margin between posi-
tive and negative samples so the classifier generalizes well to
unseen data. The version (i.e. parameter) space is the dual
space of feature space. A point in version space corresponds
to a hyperplane in the feature space and vice-versa. SVM
optimization in the feature space corresponds to finding the
largest sphere in the version space, subject to constraints of
the hyperplanes for the current feature points.

An active learning algorithm selects which unlabeled ex-
ample to be labeled next in order to maximize learning rela-
tive to user effort required.The key problem of active learn-
ing is estimating the expected benefits of labeling different
data points. Tong and Koller [24] find that the best exam-
ple to label next halves the version space. Unfortunately,
explicitly computing the size of version space is computa-
tionally infeasible. Consequently, Tong and Koller identify
useful approximation criteria for example selection. Their
Simple Margin criterion requires minimal computational
costs so can be practically applied in real-time. It predicts
utility of labeling all unlabeled data based on current SVM
model, then chooses the example lying nearest to the clas-
sification hyperplane via M(d,©), where d is the document
vector in TF-IDF (normalized %), O parameterizes the
SVM model trained with all labeled data, and M(d,®) is
the positive distance of d from the model’s hyperplane (cap-
turing uncertainty of d’s classification under the model).

Because this criterion does not require additional training,
its computational cost is low. Its effectiveness, however, de-
pends on the shape of the version space. If the version space
is far from spherical, this criterion may not perform well.
The middle figure in Figure 2 shows such an example failure
case of this criterion. Tong and Koller’s approximation cri-
teria select which example to label next entirely based upon
the learned SVM model [24]. In other words, the structure
information of the whole data set is missed in those criteria.

However, often it is the case (as it is here) that we actu-
ally know about the entire dataset, including the labeled and

Figure 2: An example illustrating the difference
between Simple Margin and Local Structure crite-
ria. ”4”, ”-”, and circle represent positive, nega-
tive and unlabeled examples. The left figure shows
the predicted classification prior to active learning.
The black solid line denotes the current hyperplane,
while the green dashed line shows the optimal hyper-
plane. The middle and right figures demonstrate the
behavior of Simple Margin and Local Structure cri-
teria, respectively. Red points represent examples
selected by active learning for labeling, and the red
dashed line shows the updated hyperplane after this
labeling. While Simple Margin selects the example
closest to the current hyperplane, Local Structure
selects an example both close to the hyperplane and
away from already labeled examples.

unlabeled. Such additional information can be usefully ex-
ploited by the learner. For example, work in semi-supervised
learning often exploits the imbalance between plentiful unla-
beled data and scarce labeled data by utilizing more accurate
estimates of variance on the unlabeled data to improve clas-
sifier accuracy. In this case, we propose another selection
criterion which considers both the performance of SVM and
the structure information of the whole data set in tandem.

Intuitively, a useful unlabeled example to label should em-
body several characteristics. First, the classifier should be
uncertain of its label prediction for the example given cur-
rent model parameters; this is captured by the Simple Mar-
gin criterion. A second property, however, is that example
should not lie close to already labeled data since close exam-
ples are likely to have the same label (e.g. standard nearest
neighbor approaches to classification or utilizing unlabeled
data in semi-supervised learning). Such close examples are
unlikely to improve the performance of the classifier much
more than a single, more useful example (e.g. see Figure 2).
As a third characteristic, the data should have nearby unla-
beled neighbors so knowing the example’s label is likely to
help us better label other nearby examples.

To capture the three properties above, we propose a new
active learning selection criterion we refer to as Local Struc-
ture. Let SL(d) = maxd,ep, cos(d,df) find the maximum
cosine similarity between d and all labeled d¢ € Dp, i.e. how
close d is to another already labeled document. Let dm de-
note d’s mth closest neighboring document, where m is a
parameter. SN(d) = cos(d,dm) measures cosine similarity
of d and dm to model d’s local neighborhood. The intu-
ition is that smaller values of SN indicate a greater number
of nearby documents that might benefit by labeling d. We
minimize a linear combination of SL, SN and M(d, ©) to
select an example d’ to label capturing the three properties:

d =arg I(I_Zlin aM(d,0)+ (1 —«a)(SL(d) —SN(d)) (3)
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Figure 2 visually compares the differing behaviors of ac-
tive learning based on Simple Margin and Local Structure
criteria. In this figure, Simple Margin criterion is seen to
select the point nearest to the hyperplane without consider-
ing structure information. The chosen example lies near to
an already labeled example, resulting in minimal change to
the classification hyperplane and thereby minimal benefit to
learning. In contrast, Local Structure criterion chooses the
point close to the hyperplane and away from labeled data. In
doing so, it thereby avoids the failure case of Simple Margin.

In our iterative RF scenario, the document selected for
feedback is “slotted” into the top position in the ranking to
guarantee the user provides feedback for it. While this en-
sures the system obtains the most useful feedback, this will
often hurt ranking accuracy (since the maximally uncertain
document will be non-relevant roughly half of the time). We
discuss this issue further in regard to evaluation methodol-
ogy (§6.2) and our future work (§8).

5. FEATURE SELECTION

High dimensionality represents a general obstacle to ef-
fective machine learning. Natural language learning tasks
exhibit an especially visible example of this due to fast vo-
cabulary growth from many words used infrequently. Var-
ious prior work in IR has investigated dimensionality re-
duction methods to mitigate issues of term mismatch be-
tween semantically related terms (e.g. LSI [8], pLSI [12], and
LDA [27]). Learning to rank methods are also impacted if
we use term-level features rather than higher-level aggregate
features as used in LETOR [15, 1]. As such, we employ di-
mensionality reduction methods for more tractable learning.

In particular, we apply a dimensionality reduction tech-
nique known as Laplacian score (LS) [10]. This unsupervised
technique is attractive due to the sparsity of labeled data
available in our task scenario (i.e. relatively few feedback
documents in comparison to the size of the feature space).
LS is a filter-based method for feature selection, where we
refer to the different dimensions of a feature vector as the
feature set. Given m input features, LS scores each feature
independently and selects the top N features, where N is
a parameter. LS is based on Laplacian Eigenmaps and Lo-
cality Preserving Projection [2, 11]. The basic assumption
of LS is that if two data points are close, they are likely to
have the same class label. An effective feature set, there-
fore, should preserve such proximity for examples belonging
to the same class. This is the same property exploited by
our Local Structure method for example selection described
earlier (§4). LS for the rth feature (LS,) is computed ac-
cording to LS, = i Zi,j(fri—frj)zsijv where f, is the rth
feature for all examples, f,; is the rth feature for example i,
o is the variance, and S is a sparse, inverse distance matrix
over all examples in which only examples in close proximity
have non-zero values. S thereby stores the local structure of
the whole example space based on all features.

Let xi* denote the k nearest neighbors to feature vector
Xj, where k is a parameter. Non-zero entries in S are given
by (Vxi,Vx; € xi%) Sy = ef|xi7xj|, where x; and xj denote
feature vectors for examples ¢ and j along all dimensions.

6. EVALUATION METHODOLOGY

Evaluating iterative RF presents several different chal-
lenges from typical Cranfield-style evaluation of ad hoc and

single-iteration RF. Acknowledging these challenges directly
helps to ensure we establish a solid evaluation framework for
measuring accuracy in this setting, comparing methods, and
understanding limitations of evaluation methodology used.

6.1 Challenges

Feedback document selection vs. use. Relevance
feedback methods can differ in how documents are selected
for feedback as well as how those documents are utilized. Re-
cent work in the TREC RF track has sought to isolate this
confounding effect to better understand what makes one RF
method more effective than another [4]. Our iterative feed-
back scenario makes it difficult to avoid this confound since
each method produces a unique ranking at each iteration
which the user then browses to provide feedback (§2).

Scarcity of relevant documents. Multiple RF meth-
ods are typically compared via residual evaluation in which
feedback documents used by any of the methods being com-
pared are excluded from evaluation (i.e. removed from both
“gold standard” judgments and system rankings). This yields
a single, common document collection for fair comparison of
methods. With iterative feedback, ideally the residual col-
lection would be determined by removing all feedback docu-
ments used by any method at any iteration considered. Once
the residual collection was known, we could “go back in time”
to evaluate accuracy of RF methods at earlier iterations.

The problem with this ideal strategy is scarcity of rele-
vant documents in typical test collections available: using as-
sessed documents for feedback often leaves relatively few for
evaluation (especially relevant documents). Consequently,
we sought an evaluation methodology that would allow us
to meaningfully evaluate relevance feedback without the full
exclusion required by traditional residual evaluation.

Another challenge due to scarcity of relevant documents
lies in computing average system accuracy across topics. Re-
call our task scenario involves the user selecting a relevant
document for feedback at each iteration (§2). Once the set of
relevant documents is exhausted for a given topic, iterative
RF terminates. However, if RF for a given topic terminates
at iteration 8, how do we compute average system accu-
racy across topics at iteration 97 Do we (a) omit the query
from the average or (b) include its accuracy as of iteration 87
Choice (a) would yield increasing error bars across iterations
as progressively fewer topics contribute to the computed av-
erage, while choice (b) would dampen the learning effects
(positive or negative) we are trying to observe. We adopt
(a) with awareness of needing to monitor result instability
at late iterations of feedback.

6.2 KeepAll and TakeOut Evaluation

To address the challenge of scarce relevant documents, we
evaluate accuracy of methods in two distinct ways, which
we denote as KeepAll and TakeOut. Both have strengths
and weaknesses, and our general thought is that evaluating
methods under both strategies in tandem provides a bal-
anced view for comparing relative accuracy of methods.

KeepAll evaluation compares methods without removal
of feedback documents. This means that even after a given
document’s relevance is made known to the system via user
feedback, we continue to include that document in the eval-
uation set. However, we also follow prior work’s strategy [9]
of imposing the restriction that systems cannot memorize
the list feedback documents, but instead must limit learn-



ing to parameter updates. Nonetheless ranking documents
that were previously viewed still results in artificially inflated
ranking accuracies observed across systems. On the positive
side, KeepAll evaluation does preserve the expected trend
of accuracies rising across systems with increasing feedback.

A possible problem with KeepAll in our task scenario is
that it could lead to the same document being selected re-
peatedly for RF across iterations. While such repeated se-
lection is actually a useful property in some learning models
such as Boosting [21], it would be odd to the user to keep
seeing the same feedback documents over-and-over again in
the results list, let alone having to tell the system multiple
times that a given document is relevant.

To address this, we distinguish two separate rankings: a
feedback ranking and an evaluation ranking. The evaluation
ranking is generated over all documents and is used to eval-
uate system accuracy. The feedback ranking is presented to
the user for feedback and filters out all previous feedback
documents from the evaluation ranking. This is similar to a
search interface that lets users “bookmark” known relevant
webpages in a sidebar and thereafter excludes them from the
ranking. Since the user is never presented the same relevant
document twice for feedback, RF iteration terminates for
each topic once all of its relevant documents are exhausted.

TakeOut evaluation, unlike KeepAll, removes feedback
documents from evaluation. We do not perform full residual
evaluation, but rather evaluate each method on a unique
residual document subset at each iteration based on feed-
back documents used up to the current iteration. This
means different methods will typically be evaluated on dif-
ferent document subsets in the same iteration, though they
will still have the same number of relative documents un-
der the correct user feedback. Moreover, since progressively
fewer relevant documents remain to be found as iteration
progresses, topics become increasingly difficult. Relevant
documents that are easier to find are taken out in earlier it-
erations, so remaining relevant documents in the pool tend
to become progressively more difficult to find individually as
well as fewer in number overall. Consequently, we observe a
counter-intuitive effect whereby the general trend across sys-
tems is for ranking accuracy to decrease rather than increase
as iteration proceeds. Nonetheless, we would expect in com-
parative evaluation of methods to see a stronger RF method
to decrease in accuracy more slowly than other methods.

A final challenge with both KeepAll and TakeOut evalua-
tion is specific to active learning (§4). Recall active learning
selects a document whose relevance is maximally uncertain
and slots it at the top rank. A practical consequence of eval-
uating ranking accuracy is that early precision metrics like
MRR become entirely dominated by this single document,
and so fail to provide any meaningful measure of the actual
ranking. To address this artifact, we focus evaluation of ac-
tive learning on the point at which the user’s effort threshold
is exceeded. The user then terminates the training phrase
and only wants to use the system thereafter. This disables
active learning and so eliminates these slotting effects. To
model this, we evaluate system accuracy on the evaluation
ranking (without slotting) rather than the feedback ranking
(with slotting). User effort is still measured off the feedback
ranking, ensuring that slotting any non-relevant documents
increases measured user effort since the user must browse
more results before finding a relevant document.

7. EVALUATION

Recall our interactive search task involves iterative back-
and-forth between system ranking and user feedback (§2).
The system goal in this scenario is to maximize ranking accu-
racy for any amount of relevance feedback provided. Conse-
quently, our evaluation measures ranking accuracy achieved
under varying amounts of user feedback in order to compute
the learning curve of each relevance feedback method. Mea-
suring this curve enables us to compare the relative strength
of each method across a range of possible stopping points
which might be encountered in practice and suggest different
methods being better suited to different use cases. Our main
results assume user feedback to the system is always correct,
similar to a traditional RF setting with known relevant and
non-relevant documents (§7.2). We also present results for
a noisy feedback scenario (§7.3) and an alternative learning
scenario on LETOR TD2003 and TD2004 collections (§7.4).

7.1 Experimental Setup

Experiments in §7.2 and §7.3 are reported on the TREC?
Robust04 document collection of newswire articles. Topics
301-450 were used for evaluation during system development
and tuning, with topics 601-700 held out for final testing.
System queries are taken from title field of each topic. An
initial ranking of 200 documents for each query is generated
using Indri [23]. This initial ranking provides both a base-
line measure of system accuracy as well as the document
pool subsequently re-ranked by each RF method. To reduce
vocabulary growth from rare words, we prune out any term
which does not occur at least twice in some document and
at least four times in the entire collection. This reduces the
vocabulary size of the query-specific document pools from
about 10,000-20,000 terms to about 3,000-4,000 terms.

We compare the relative performance of several RF base-
line methods in this task setting of iterative feedback (§3):
(1) Rocchio feedback [20] (denoted by “Rocchio”), (2) Roc-
chio with positive feedback only (denoted by “RocchioPos”),
and (3) model-based feedback [28] (denoted by “Language”).
Since prior work has only observed modest benefits from
negative feedback, we were particularly interested in com-
paring the relative performance of (1) and (2) in our task
setting. Additional details of baseline methods are discussed
in §3. For all baselines, parameters are tuned on the devel-
opment set to maximize the accuracy of each method: Roc-
chio (o = 0.05, 8 = 0.5), RocchioPos (a = 0.05, 8 = 1), and
model-based (Language) (o = 0.05, A = 0.8, and v = 0.3).

For active learning, we evaluate both Simple Margin
and Local Structure criteria (§4). Simple Margin has
no parameters, while with Local Structure we use m = 10
neighbors and o = 0.5. LS feature selection (§5) further
reduces vocabulary size for active learning using k = 15
neighbors and N = 2500 features (a modest further reduc-
tion from the already reduced vocabulary size). Feature se-
lection is not used with baseline methods. While baselines
benefit from interpolating the original query with feedback
(an anchoring effect to prevent query drift), active learn-
ing methods perform ranking based on feedback documents
only. Exploring anchoring between the query model and
active learning via rank fusion [6] remains for future work.

Ranking accuracy is measured by three metrics: mean-
average precision (MAP), top-10 precision (P@10), and mean
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MAPD P10 MRR MAP_AIl PQI0_AIl
RocchioPos || 0.3296 (p < 0.001) | 0.2554 (p < 0.001) | 0.5437 (p < 0.001) || 0.6268 (p < 0.001) | 0.6423 (p < 0.001)
Rocchio 0.3449 (p < 0.001) | 0.2755 (p < 0.001) | 0.5848 (p < 0.001) || 0.6846 (p < 0.001) | 0.6987 (p < 0.001)
Language 0.3923 (p ~ 0.24) | 0.2918 (p ~ 0.019) | 0.6028 (p ~ 0.016) || 0.6730 (p < 0.001) | 0.6754 (p < 0.001)
ActiveMargin 0.39521 0.31167 0.62517 0.7427% 0.7399%
ActiveStructure 0.3978% 0.3135% 0.6248% 0.74751* 0.7525%

Table 1: Average accuracy of each method across feedback iterations. Statistical significance is computed

by two-sided paired t-test [22].

Significance levels p for ActiveMargin vs. each baseline are included in

each baseline’s cell. { denotes significant improvement (p < 0.05) over at least one baseline, } a significant
improvement over all baselines, and * a significant improvement of Local Structure over Simple Margin.
MAP_AIll and P@10_All correspond to KeepAll evaluation; other measures correspond to TakeOut evaluation.

reciprocal rank (MRR). User effort is measured by the total
number of clicks, which equals the number of positive docu-
ments with correct feedback and upper-bounds the number
of positive documents with noisy feedback. We also tracked
the total number of documents viewed by the user in brows-
ing search results but saw the number of clicks and views
were very correlated and largely yielded the same learning
curve plots. Consequently, we omit these results to sim-
plify presentation. Another related metric we did not mea-
sure is Cooper’s expected search length: the number of non-
relevant documents a user needs to skip over to find some
number of relevant documents desired [5].

7.2 Correct Relevance Feedback

Figure 3 presents empirical results for both TakeOut and
KeepAll evaluation conditions (see §6.2) assuming relevance
feedback provided by the user is always correct. We also
compute the average accuracy of each method across iter-
ations and present this in Table 1, along with results of
statistical significance tests. Statistical significance of im-
provements is determined using a two-sided paired t-test [22]
at the 5% significance level over all queries. The proposed
active learning methods (Simple Margin and Local Struc-
ture) are seen to by-and-large dominate baselines across it-
erations, metrics, and for both TakeOut and KeepAll con-
ditions. We omit the plot of MRR due to space limitations,
though we do report it for TakeOut evaluation in Table 1.
MRR is not meaningful for KeepAll since the labeled docu-
ments are essentially always ranked at the top.

As mentioned earlier (§6), an experimental challenge is
that while we expect system accuracy to improve with in-
creasing feedback, we have a confounding factor that tends
to work against this: as more relevant documents are “used
up” for feedback, fewer remain to be found in subsequent
iterations, effectively increasing query difficult. Moreover,
documents that are “easier” to find are taken out in ear-
lier iterations, so remaining relevant documents in the pool
become progressively more difficult to find individually as
well as fewer in number overall. This effect is particularly
pronounced in the TakeOut condition in which system ac-
curacies tend to decrease due to fewer relevant documents
remaining in the residual collection used for evaluation.

With the KeepAll condition, all documents are reranked
and included in evaluation at each iteration. As noted earlier
(see §6.2), this system does not “remember” earlier feedback
documents and must rerank them like any other document
based on learned parameters. However, it is still the case
that the system has learned from having seen some of the
relevant documents that are now being evaluated on, which

tends to introduce the opposite evaluation effect that system
accuracy tends to be inflated across methods with increas-
ing feedback. Allowing for this effect, Figure 3(a) shows that
under KeepAll evaluation, all feedback methods are seen to
exhibit the expected (and more intuitive) behavior of achiev-
ing increased accuracy with greater feedback. While Take-
Out and KeepAll evaluation conditions each have their own
respective limitations, the key point to observe with regard
to our evaluation of active learning is that it dominates the
other baselines across both methods of evaluation.

Another interesting point to note is the observed value of
negative feedback in our results vs. what has traditionally
been observed in ad hoc search or single-iteration relevance
feedback. The traditional wisdom has been that negative
documents have relatively little in common, so learning what
one looks like does not help the system avoid ranking another
one highly. In our experiments, three methods use both
positive and negative feedback: Rocchio, Simple Margin,
and Local Structure. RocchioPos and Language only use
positive feedback. Of particular note, Rocchio outperforms
RocchioPos on nearly all metrics in all iterations. Both ac-
tive learning methods dominate all baselines, including all
methods using only positive feedback, in MAP and P@10.
One possible explanation for our findings is that our user
model and method for obtaining relevance feedback tend to
produce many more non-relevant documents than relevant
documents for feedback, thus en masse, many examples of
non-relevant documents do help to characterize the overall
space of non-relevance. Another possible effect we are ob-
serving is due the entire document pool coming from the
initial Indri ranking, thus the set of non-relevant documents
used for feedback might otherwise be highly ranked by the
system. The TREC Relevance Feedback track [4] has inves-
tigated issues of feedback document selection in recent years,
though the question remains open as to what constitutes a
useful non-relevant document for negative feedback [26].

7.3 Noisy Relevance Feedback

This section reports relative accuracy achieved by differ-
ent RF methods under noisy feedback, when the user clicks
on non-relevant documents or fails to click on relevant ones.
As discussed earlier (§2), noisy feedback is modeled using
two Bernoulli parameters, f, and f,, to control the false
positive and negative rates, respectively. Setting both pa-
rameters to zero yields the same correct feedback setting
evaluated above. We evaluate methods for three noise con-
ditions: (1) f, =0 and f, = 0.1, (2) f, = 0.1 and f, =0,
and (3) f, = 0.1 and f,, = 0.1. Results of KeepAll evalua-
tion are shown in Figure 5.
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Figure 3: Learning curve plots depict ranking accuracy on Robust04 of the different feedback methods given a
varying number of correct relevance feedback documents provided by the user. The horizontal axis indicates
the number of feedback iterations (and by this same token, the number of positive feedback documents used).

While all methods are seen to decrease in accuracy in com-
parison to the noiseless condition, active learning methods
continue to dominate the other baselines. However, results
with noise rates of 20% and higher have shown Rocchio to
dominate active learning, suggesting a threshold for method
selection based upon the level of noise. Our hypothesis for
this behavior is that active learning, which updates the deci-
sion surface based on feedback, is inherently more sensitive
than Rocchio, which simply updates its linear combination
of feedback documents. Thus the same virtue which enables
active learning to learn more efficiently from correct feed-
back appears to render it less robust to noisy feedback.

7.4 Relevance Feedback on LETOR

This section presents experimental results conducted on
LETOR 3.0 [15]. LETOR defines a standard feature rep-
resentation of documents for supporting machine learning
studies, enabling easier comparison of alternative learning
strategies for the same features. In comparison to the term-
based features used in our earlier experiments on Robust04,
LETOR features are quite different and potentially more

powerful, providing another useful benchmark for assessing
the relative effectiveness of our active learning methods.
While LETOR includes several document collections, not
all are suitable for our study. In particular, because we are
interested in RF (which requires many relevant documents),
we exclude OHSUMED, as well as Homepage or Named Page
Finding collections. Instead, we focus on Topic Distillation:
TD2003 and TD2004. These collections are derived from
the 2003 and 2004 TREC Web track [7] tasks on the .GOV
collection (a 1.25 million web crawl of the .gov domain per-
formed in 2002). No dimensionality reduction is performed.
For LETOR, we do not have the query, so model-based
feedback [28] cannot be evaluated. For other methods, we
use two positive and two negative documents to form the
query for Rocchio, and to initialize the active learning mod-
els. Active learning parameters are identical to those used
in our earlier experiments on Robust04 with one notable ex-
ception: we restrict the ratio of non-relevant feedback to rel-
evant feedback at a heuristic 7:1 ratio. That is, we ignore ad-
ditional non-relevant documents provided as feedback when-
ever it would exceed this threshold. While TD2003 and
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Figure 4: Learning curves of RF methods on LETOR’s TD2003 (first row) and TD2004 (second row) collec-
tions depict ranking accuracy vs. amount of relevance feedback provided. Accuracy levels reflect training on
a single topic and testing on the remaining topics, repeated round-robin for cross-validation. The horizontal
axis indicates the number of feedback iterations (equal to the number of positive feedback documents used).
Active learning methods perform as well or better than Rocchio. As the histogram shows, relevant documents
per topic are quite sparse, restricting the number of feedback iterations possible with stable evaluation.

TD2004 have more relevant documents per topic than other
LETOR collections, relevant documents remain relatively
sparse. We found that an excess of non-relevant documents
hurt active learning accuracy. Parameters are tuned on
TD2003, and tested on TD2004.

A significant difference between our evaluation on LETOR
vs. Robust04 stems from the differing nature of features in
the two collections. With term-based features (Robust04),
RF let us learn term-based weights to improve ranking ac-
curacy for the current query. For example, while the word
“dog” might be very important to the current query, RF on
this query cannot tell us anything about how important this
word should be for other queries. With LETOR, in contrast,
features capture general properties of query-document com-
patibility. This means, for example, that if the PageRank
feature is important for the current query, there is a good
chance it will be important for other queries as well.

Due to this difference in features, we can simplify our
evaluation methodology enormously by adopting a slightly
altered task scenario. In this new scenario, training and
testing phases are completely distinct: the user trains the
system via iterative feedback on one topic, then uses the
system to rank documents for all other topics. Because the
user cannot provide iterative feedback on multiple queries in
parallel, we abandon LETOR’s standard 5-fold partition of
topics. Instead, for each topic we train on it alone and eval-
uate on all other topics, then we average this over all topics.

Since we are only training on a single topic, resulting ac-
curacy is far lower than what typically published LETOR
results. As with our first batch of results presented for Ro-
bust04, we again assume the user provides correct feedback.

This revised task means that the user no longer cares
about finding relevant documents for the current topic. How-
ever, he stills terminates iteration whenever either (a) the
trained system is “good enough”, (b) his effort threshold in
training the system is exceeded, or (¢) no additional relevant
documents remain for feedback. As in earlier experiments on
Robust04, once (c¢) occurs, we exclude the given topic from
average accuracy calculations in subsequent iterations. This
means that learning curve plots reflect an average over pro-
gressively fewer topics as the number of relevant documents
is exhausted. As the average is computed over progressively
fewer topics, stability decreases, especially at late iterations.

Consequently, we only present results for 10 iterations
with TD2003 and 20 iterations with TD2004. These termi-
nation points stem from the corresponding histograms for
TD2003 and TD2004 indicating number of relevant docu-
ments per query (Figures 4(c) and Figure 4(f), respectively).
We stop iteration when the number of topics remaining
would fall below 20 (a loose threshold for result stability
from observation). While the histogram for the Robust04
collection is not shown, the choice of terminating after 35
iterations there is the same: there would be less than 20
topics with any relevant documents left to be found.



Results in Figure 4 show that active learning methods
perform as well or better than Rocchio.

8. CONCLUSION AND FUTURE WORK

This paper considers an interactive IR scenario in which
the user is interested in finding several to many relevant
documents with minimal effort. Given an initial document
ranking, the user interacts with the system to provide it-
erative relevance feedback. Evaluation on the TREC Ro-
bust04 collection and LETOR TD2003 and TD2004 collec-
tions shows our active learning approach dominates several
standard baselines in terms of effectiveness achieved relative
to the amount of user effort required.

Future work will continue to develop our active learning
methods, evaluate on additional document collections, com-
pare stability of parameters across collections, and evaluate
noisy feedback using real user data. We are also interested in
modeling and evaluating active learning for diversity rank-
ing [16, 18, 25] with interactive retrieval.

Investigation of the exploration vs. exploitation learning
tradeoff represents another interesting direction for future
work: varying the rank at which to slot-in an uncertain doc-
ument for feedback, as well as potentially varying the num-
ber of uncertain documents used. While a lower ranking of
uncertain documents will increase ranking accuracy at the
current iteration, doing so may reduce accuracy at future
iterations by increasing the probability of a different rele-
vant document occurring at a higher rank. In that event,
the user would never see the uncertain document (under as-
sumptions of the current user model), thereby failing to label
the example selected by active learning.
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Figure 5: Learning curves for the five relevance feedback methods given noisy user feedback. f, and f, denote
Bernoulli probabilities of false positives (erroneous clicks) and false negatives (missed relevant documents)
by the user, respectively. Evaluation is performed under KeepAll condition. The horizontal axis indicates
the number of feedback iterations (and by this same token, the number of user clicks). In comparison to
earlier results with correct feedback, we see the introduction of noise decreases accuracy, as expected. Active
learning methods Simple Margin and Local Structure continue to dominate the baseline methods.



