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ABSTRACT
Because individual crowd workers often exhibit high vari-
ance in annotation accuracy, we often ask multiple crowd
workers to label each example to infer a single consensus
label. While simple majority vote computes consensus by
equally weighting each worker’s vote, weighted voting as-
signs greater weight to more accurate workers, where accu-
racy is estimated by inner-annotator agreement (unsuper-
vised) and/or agreement with known expert labels (super-
vised). In this paper, we investigate the annotation cost vs.
consensus accuracy benefit from increasing the amount of
expert supervision. To maximize benefit from supervision,
we propose a semi-supervised approach which infers consen-
sus labels using both labeled and unlabeled examples. We
compare our semi-supervised approach with several existing
unsupervised and supervised baselines, evaluating on both
synthetic data and Amazon Mechanical Turk data. Results
show (a) a very modest amount of supervision can provide
significant benefit, and (b) consensus accuracy from full su-
pervision with a large amount of labeled data is matched by
our semi-supervised approach with much less supervision.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Crowdsourcing, semi-supervised learning

1. INTRODUCTION
Crowdsourcing has emerged as a major labor pool of ex-

ploring human computation for a variety of small tasks over
the past few years. Such tasks include image tagging, nat-
ural language annotations [14], relevance judging [1], etc.
Amazon Mechanical Turk (MTurk) has attracted increasing
attention in industrial and academic research as a conve-
nient, inexpensive, and efficient platform for crowdsourcing
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tasks that are difficult to effectively automate but can be
performed by remote workers.

On MTurk, “requesters” typically submit many annota-
tion micro-tasks, and workers choose which tasks to perform.
Requesters obtain labels more quickly and affordably, and
workers earn a few extra bucks. Unfortunately, accuracy of
individual crowd workers has often exhibited high variance
in past studies due to factors like poor design or incentives of
tasks, ineffective or unengaged workers, or annotation task
complexity. Two common methods for quality control are:
(a) worker filtering [6] (i.e. identifying poor quality workers
and excluding them) and (b) aggregating labels from multi-
ple workers for a given example in order to arrive at a single
“consensus” label. In this paper, we focus on the consensus
problem; our future work will study a combined approach.

Accurately estimating consensus labels from individual
worker labels is challenging. A common approach to this
problem is simple Majority Voting (MV) [14, 13, 16], which
is easy to use and can often achieve relatively good empir-
ical results depending on the accuracy of workers involved.
In MV method, the annotation that receives the maximum
number of votes is treated as the final aggregated label, with
ties broken randomly. A limitation of MV is that the consen-
sus label for example is estimated locally, considering only
the labels assigned to that example (without regard to ac-
curacy of the workers involved on other examples).

An alternative is to consider the full set of global labels
to estimate worker accuracies. These accuracies can then
be utilized for weighted voting [9, 8]. A variety of work
has investigated means for assessing quality of worker judg-
ments [11] and/or difficulty of annotation tasks [15]. If
true ”gold” labels for some examples are first annotated
by experts, estimation can be usefully informed by having
workers re-annotate these same examples and compare their
labels to those of the experts. Snow et al. [14] adopted
a fully-supervised Naive Bayes (NB) method to estimate
the consensus labels from such gold labels. However, full-
supervision can be costly in expert annotation (why we are
doing crowdsourcing in the first place). Recent work has
studied the effectiveness of supervised vs. unsupervised meth-
ods for consensus labeling via simulation [5].

While voluminous amounts of expert data cannot be ex-
pected, it may be practical to obtain a limited amount of
gold data from experts if there is sufficient benefit to the
consensus accuracy we can achieve relative to the expert
annotation cost. Similar thinking has driven a large body
of work in semi-supervised learning and active learning [12].
In such a scenario, we can estimate consensus labels based
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on whatever information is available to us, labeled and un-
labeled examples alike. In this paper, we investigate a semi-
supervised approach for consensus labeling. We build upon
prior work by Nigam et al. [10] from text classification.
The rest of this paper is organized as follows. §2 describes

existing statistical methods for consensus labeling in detail
and introduce our semi-supervised approach. §3 introduces
the datasets we used in our study. Experimental results
based on both synthetic and real MTurk data are reported
in §4. We draw conclusions and discuss future work in §5.

2. CONSENSUS LABELING METHODS
A typical crowdsourcing task consists of a set of M exam-

ples E = {em}Mm=1. Each example is associated with some
true label l(em) from a set of classes {1, . . . , C}. We as-
sume that there are K workers W = {wk}

K
k=1 participating

into this annotation task. Each example receives labels from
one or more workers. While not common, a given example
can actually be annotated multiple times by the same worker
(e.g. reusing a“trap question”across multiple worker assign-
ments or validating self-consistency of workers over time by

question repetition). Let n
(k)
mj denote the number of times

example em receives response j from worker wk. Let {Tmi},
where m = 1, . . . ,M and i = 1, . . . , C, be the set of indica-
tors for class membership of example em such that Tmt = 1
if t is the true label of example em and Tmi = 0 otherwise.
Majority Vote (MV) assigns the label with the most votes:

l̂(em) = argmax
c

N(c) (1)

as the estimation to the true label for example em, where
N(c) denotes the number of times example em receive re-
sponse c from all workers.
Expectation Maximization (EM) [3] first estimates the er-

ror rates of each worker wk by a latent confusion matrix

[π
(k)
ij ]C×C , where the ij-th element π

(k)
ij denotes the proba-

bility of worker wk classifying an example to class j given
the true label is i, which can be estimated based on each
example’s class membership as:

π̂
(k)
ij =

M
∑

m=1

Tmin
(k)
mj/

C
∑

i=1

M
∑

m=1

Tmin
(k)
mj , (2)

and the latent class prior {pi}
L
i=1 is estimated as:

p̂i =
M
∑

m=1

Tmi/M. (3)

Since the true label for each example em is unknown in
the unsupervised methods, i.e., Tmi is missing, EM uses the
mixture of multinomials to describe the quality of workers.
Assuming every pair of workers provides independent judg-
ments, the probabilistic model likelihood can be written:

L(pi, π
(k)
ij ) =

M
∏

m=1

(

C
∑

i=1

pi

K
∏

k=1

C
∏

j=1

(π
(k)
ij )n

(k)
mj

)

. (4)

Directly estimating the maximum likelihood defined in
Equation (4) is difficult since it involves computing product
of summation. After we get estimates for latent parameters

pi and π
(k)
ij , we can derive new class membership Tmi for ex-

ample em such that Tml = 1 if l is the estimated true label

for example em which maximizes:

L(pi, π
(k)
ij ) =

M
∏

m=1

pi

K
∏

k=1

C
∏

j=1

(π
(k)
ij )n

(k)
mj . (5)

Therefore, using EM algorithm, we can iteratively esti-

mate latent parameters pi, π
(k)
ij and missing labels Tmi,

based on Equation (2), (3) and (5), until convergence.
If true labels of examples are all available, the above prob-

abilistic model is reduced to a single multinomial distribu-
tion. The likelihood can be simplified as in Equation (5).
In this case, Naive Bayes (NB) method can be applied to
estimate a more accurate confusion matrix for each worker
using Equation (5) with the same assumption that there is
no interaction between workers.

What is of great interest in this work is to estimate con-
fusion matrix for each worker when both labeled and unla-
beled examples are available for us. In this case, we assume
that there is a small set of examples L whose true labels
have been provided by domain experts and the set of rest
unlabeled examples is denoted as U .

To address this, we propose to a Semi-supervised Naive
Bayes (SNB) approach with new likelihood function:

L(pi, π
(k)
ij ) =

∏

m∈U

(

C
∑

i=1

pi

K
∏

k=1

C
∏

j=1

(π
(k)
ij )n

(k)
mj

)

+

∏

m∈L

pi

K
∏

k=1

C
∏

j=1

(π
(k)
ij )n

(k)
mj . (6)

From Equation (6), we can see that the difference between
EM and semi-supervised Naive Bayes method is that we
have a separate set of examples whose true labels are known
a priori. The labeled examples are used to estimated model
parameters and then to give “soft” labels for each unlabeled
examples. After that, the model parameters are estimated
again based on all labels. This procedure continues until
convergence. Figure 1 presents SNB pseudocode.

Algorithm: Semi-supervised Naive Bayes (SNB)
Input: A set of labels {lkm} from worker wk to example em
and a set of true labels {cl} to some examples el ∈ E.

Output: Confusion matrix for π
(k
ij for each worker wk, class

prior distribution {pi}
C
i=1 and estimated consensus label T̂ (em)

for example em.
Steps:

1. Initialization: initialize labels of unlabeled examples by
majority voting over worker judgments;

2. Loop until there is no further improvement:

(a) Given the true labels for labeled examples and
estimated labels for unlabeled examples, estimate

the latent model parameters pi and π
(k)
ij using

Equation (3) and (2), respectively;

(b) re-estimate consensus labels for unlabeled examples
using Equation (5);

Figure 1: Semi-supervised Naive Bayes algorithm.

3. DATA
This section describes two datasets used to evaluate our

methods: a synthetic dataset with labels automatically gen-

37



erated via simulated workers, and a dataset of actual la-
bels collected from MTurk workers. Evaluation using these
datasets is described in §4.

3.1 Synthetic Data
To simulate workers with differing accuracy and control

for the ratio of labeled vs. unlabeled examples, we gener-
ate a synthetic data set for binary classification with 8000
examples (uniformly) randomly assigned to each class. We
generate a pool of 800 workers, each with a simple Bernoulli
accuracy parameter pk ∼ U[0.3, 0.7]. The number of labels
per example is randomly set between 2 to 8, and the assign-
ment of workers to examples is selected uniformly at random
(with replacement, though workers annotate each example

em at most once: ∀j ∈ C, n
(k)
mj <= 1).

3.2 MTurk Data
To evaluate the effectiveness of our methods on human

relevance judgments, we used topical judgments collected via
MTurk for the TREC 2010 Relevance Feedback Track [2].
Judging was performed via a mostly pre-existing judging

interface described in [4]; Figure 2 gives a screenshot of the
judging interface. Workers were provided a NIST TREC1 ti-
tle, description, and narrative for each search topic and asked
to assess topical relevance of five ClueWeb092 Webpages per
MTurk Human Intelligence Task (HIT). We offered workers
US $0.05 per HIT. Relevance judging was predominantly
ternary, with multiple choice responses “very relevant”, “rel-
evant”, and “not relevant”. To protect crowd workers from
malicious attack pages, workers judged rendered Webpages
in one of three forms: as images, PDFs, or text. To allow for
the possibility of processing error, a fourth multiple choice
option (“I could not view... the webpage...”) allowed workers
to report such problems explicitly.
For quality control, one Webpage per HIT either had a

prior NIST judgment or was intentionally broken (in which
case the correct response was the fourth multiple choice
option). In our experiments, 3,275 of 19,033 total topic-
document examples had prior expert labels (we exclude bro-
ken link examples and judgments in this study). We also
collapse “very relevant” and “relevant” categories, yielding
binary labels distinguishing relevance vs. non-relevance only.
Figure 3 shows statistics of worker accuracy vs. the num-

ber of annotations per worker. Each point represents a
worker, the x-axis (in log scale) denotes the number of anno-
tations provided by the given worker, and the y-axis shows
worker accuracy relative to prior expert labels. We see that
most workers provide a few low quality annotations.

4. EXPERIMENTS
We report a set of experiments performed on both syn-

thetic data and real MTurk data described in §3. Results
show that (a) a very modest amount of supervision can pro-
vide significant benefit, and (b) consensus accuracy from full
supervision with a large amount of labeled data is matched
by our semi-supervised approach with much less supervision.
We compare three methods: (1) unsupervised MV and

EM baselines; (2) supervised NB trained on labeled exam-
ples only; (3) SNB using labeled and unlabeled examples.

1http://trec.nist.gov
2http://lemurproject.org/clueweb09.php
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Figure 3: Worker accuracy vs. number of annota-

tions per worker in the MTurk dataset.

4.1 Supervised vs. unsupervised
In our first set of experiments, we compare supervised NB

to unsupervised MV and EM. For both synthetic and MTurk
datasets, we randomly partition data into train (2048 exam-
ples) and test folds (remaining examples). We incrementally
vary the number of training examples used for supervision
by powers of two (e.g. 128, 256, 512, 1024, 2048); when less
than the full training set is used, remaining training data is
ignored. We measure accuracy of consensus labels obtained,
running each experiment 10 times and averaging for result
stability.

Figure 4 and Figure 5 show the learning curve of super-
vised NB with increasing amount of supervision vs. unsuper-
vised MV and EM baselines on synthetic and MTurk data,
respectively. Note that the accuracies of unsupervised MV
and EM methods remain unchanged since the unsupervised
methods do not utilize any supervision.

Results for both synthetic and MTurk data are shown and
similar. From Figure 4 we can see that, for the synthetic
dataset, EM slightly outperforms MV, 75.0% to 74.2%. Both
outperform NB when only 128 training examples are used
(66.6%). With 512 examples, NB beats EM. When we use
the full training set of 2048 examples, NB achieves a far
superior 88.7% accuracy, but at a clear cost in expert anno-
tation effort required.

Similarly, from Figure 5, EM also outperforms MV (66.6%
to 63.9%) for the MTurk dataset, and NB is once more infe-
rior (62.9%) with only 128 training examples. NB matches
EM with 256 training examples, and achieves 70.6% accu-
racy with the full training set (far less than in the synthetic
data, but clearly superior to the unsupervised baselines).

Overall, we see that 256-512 training examples are needed
for NB to match or exceed the unsupervised baselines, and
that significantly improved accuracy is possible with increas-
ing supervision beyond this.
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Figure 2: A screenshot of the judging interface for our MTurk task.
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Figure 4: Supervised NB vs. unsupervised MV and

EM on the synthetic dataset.
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Figure 5: Supervised NB vs. unsupervised MV and

EM on the MTurk dataset.

4.2 Semi-supervised vs. supervised
In our second set of experiments, we compare our semi-

supervised SNB method vs. supervised NB method, eval-
uating consensus accuracy achieved across varying amount
of labeled vs. unlabeled training data. Starting from each
of the same labeled training size values considered in our
first set of experiments for supervised NB, we now consider
adding additional unlabeled examples in powers of two as
before into the training set, though now we have potentially
more data to use (up to 5000 unlabeled examples in the
synthetic data, and up to 15758 examples with MTurk). As
before, we repeat experiments 10 times and average.
Figure 6 and Figure 7 compare semi-supervised SNBmethod

with supervised NB method for synthetic and MTurk data,
respectively. Results on both synthetic and MTurk data are
quite similar. Each curve in the figures corresponds to a SNB
method trained on a different number of (labeled) training
examples. The x-axis indicates the number of additional,
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Figure 6: Semi-supervised SNB vs. supervised NB

method on the synthetic dataset.
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Figure 7: Semi-supervised SNB vs. supervised NB

method on the MTurk dataset.

unlabeled examples used for training. While not shown, a
value of x = 0 (no unlabeled data used) in Figure 6 and
Figure 7 would correspond exactly to the accuracy achieved
by supervised NB method from Figure 4 and Figure 5, re-
spectively. All curves approach convergence with the full
training set (all available labeled and unlabeled data).

Labels for unlabeled examples are automatically estimated
by SNB with a given confidence during the training process.
Worker labels are then compared to these generated labels
and confidence values in order to estimate worker accuracies
(in addition to comparing worker labels on expert labeled
examples). Figure 4 and Figure 5 intuitively showed that
NB consensus accuracy increases with more labeled train-
ing data. Figure 6 and Figure 7 reflect this in the relative
starting positions of each learning curve of SNB method.

Recall that unsupervised EM method achieved 75.0% con-
sensus accuracy for the synthetic data in Figure 4. From
Figure 6 we can see that, with only 256 labeled and 1024
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unlabeled training examples, SNB achieve the same perfor-
mance as unsupervised EM. However, if we have only 128
labeled examples but use all unlabeled examples as training
set, SNB achieves approx 85% accuracy. At the high end,
while NB maxed out with < 95% with the full training set,
SNB achieves ≈ 92%.
Similarly, recall that unsupervised EM baseline achieved

66.6% consensus accuracy in Figure 5 for the MTurk data
set. From Figure 7, we see that with only 128 labeled and
1024 unlabeled examples as training set, SNB matches EM.
With the full set of unlabeled examples for training, how-
ever, SNB achieves nearly 70% accuracy and almost the
same accuracy that NB achieved when requiring all 2048
labeled examples as training.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed a semi-supervised Naive Bayes

approach for more accurately inferring consensus labels given
relatively less labeled training data for estimating worker ac-
curacy. The proposed method can be used in the situation
where we have large amount of unlabeled examples while
there is also a small set of expert-labeled examples are avail-
able. Experiments on both synthetic and real MTurk data
show that (a) a very modest amount of supervision can pro-
vide significant benefit, and (b) consensus accuracy from full
supervision with a large amount of labeled data is matched
by our semi-supervised approach with much less supervi-
sion. When expert-labeled examples are limited (e.g. due
to time constraints, available budget, or access to person-
nel), we still can achieve similar consensus accuracy of the
fully supervised method via the semi-supervised approach
and with large amount of unlabeled examples.
We would like to integrate worker filtering [6] with consen-

sus labeling to better understand how far each can be taken
on its own and how to best the two approaches synergisti-
cally. We have also only evaluated our consensus methods in
the context of one crowdsourcing design and a matching syn-
thetic data setting. Another important direction for quality
control is by better addressing other human factors [7, 4].
Better interface or questionnaire design, pricing, or worker
recruitment/retention practices, etc. could lessen the degree
of filtering/consensus needed, and remaining errors may ex-
hibit different properties. Inversely, less attention to such
issues would also present a greater volume and altered dis-
tribution of labeling errors for filtering and consensus to cor-
rect. Future work should investigate better human factors
design and test quality control automation under a wider
range of crowdsourcing designs and label noise conditions.
Another interesting direction will utilize predicted labels

for unlabeled examples in the annotation process. For ex-
ample, active learning typically focuses annotation effort on
labeling those examples for which current predictions are the
most uncertain (and so human labels would be the most in-
formative) [12]. Another direction of work has investigated
to what degree providing annotators with predicted labels
might reduce time or increase quality of their subsequent
labels. Or instead of simply comparing workers’ labels with
one another’s or with expert labels, we might also compare
them to our predicted labels based on the current model.
This requires a careful balancing act between label informa-
tiveness and verifiability: while the most informative labels
could not be verified by the model (since they would be too

“surprising”), labels which could be trivially verified would
not be very informative for model training.
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