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Abstract—Locating bugs is important, difficult, and expensive,
particularly for large-scale systems. To address this, natural
language information retrieval techniques are increasingly being
used to suggest potential faulty source files given bug reports.
While these techniques are very scalable, in practice their
effectiveness remains low in accurately localizing bugs to a small
number of files. Our key insight is that structured information
retrieval based on code constructs, such as class and method
names, enables more accurate bug localization. We present
BLUiR, which embodies this insight, requires only the source
code and bug reports, and takes advantage of bug similarity data
if available. We build BLUiR on a proven, open source IR toolkit
that anyone can use. Our work provides a thorough grounding of
IR-based bug localization research in fundamental IR theoretical
and empirical knowledge and practice. We evaluate BLUiR on
four open source projects with approximately 3,400 bugs. Results
show that BLUiR matches or outperforms a current state-of-the-
art tool across applications considered, even when BLUiR does
not use bug similarity data used by the other tool.

Index Terms—Bug localization, information retrieval, search

I. INTRODUCTION

Frederick Brooks wrote that “Software entities are more
complex for their size than perhaps any other human construct
because no two parts are alike (at least above the statement
level)” [5]. Due to this inherent complexity of software con-
struction, software bugs remain frequent. For a large software
system, the number of bugs may range from hundreds to
thousands. Generally, bug fixing starts with finding relevant
buggy source code. i.e., bug localization. However, performing
this process manually for many bugs is time consuming
and expensive. Therefore, effective methods for locating bugs
automatically from bug reports are highly desirable.

There are two general approaches for bug localization: i)
dynamically locating the bug via program execution together
with such technologies as execution and data monitoring,
breakpoints etc. [1]; and ii) statically locating bugs via various
forms of analyses using the bug reports together with the
code [15]. The dynamic approach is often time consuming
and expensive. The ease of the static approach, together with
its immediate recommendation, make it appealing.

In recent years, information retrieval (IR) based bug lo-
calization techniques have gained significant attention due to
their relatively low computational cost and minimal external
dependencies (e.g., requiring only source code and bug report
in order to operate) [2]. In these IR approaches, each bug

report is treated as a query, and the source files to be searched
comprise the document collection. IR techniques then rank the
documents by predicted relevance, returning a ranked list of
candidate source files which may contain the bug. Lukins et al.
[21] proposed a Latent Dirichlet Allocation (LDA) approach,
while Rao et al. [29] compared a range of IR techniques:
Unigram, Vector Space, Latent Semantic Analysis (LSA),
LDA, Cluster Based, and various combinations. Both used a
relatively small number of bugs in evaluation. Ngyuen et al.
proposed BugScout [25], which customized LDA for bug lo-
calization. Results on several large-scale datasets showed good
performance. Recently, Zhou et al. [46] proposed BugLocator,
which combined a sophisticated TF.IDF formulation, a model-
ing heuristic for file length, and knowledge of previously fixed
similar bugs. In a large scale evaluation of approximately 3,400
bugs over four open source projects, BugLocator showed even
stronger performance than BugScout. Moreover, datasets and
BugLocator’s executable were made available, providing an
invaluable benchmark for testing and comparing alternative
IR approaches to bug localization.

Despite the empirical success of prior work, we perceive
a gap today between IR community practices and techniques
being applied to bug localization. For example, existing IR-
based bug localization treats source code as flat text lacking
structure. In fact, source code’s rich structure distinguishes
code constructs such as comments, names of classes, methods,
and variables, etc. While ignoring such code structure sim-
plifies the system, it also sacrifices an opportunity to exploit
this structural information to improve localization accuracy.
While we believe modeling source code structure is novel for
bug localization, we also note that the concept of modeling
document structure in IR is quite old (e.g., Google in 1998 [4]
and more recent BM25F [31]).

Whereas recent prior work devised a heuristic to model
program length, we discuss how the importance of length
normalization was actually recognized in IR two decades
ago [38] and is built-into today’s baseline IR models. In the
same vein, we discuss how the use of bug similarity data to
improve localization is closely related to the established IR
use of relevance feedback data [33]. Generalizing from this,
we suspect our idea for modeling code structure is only one of
the many ways in which IR-based bug location could benefit
from greater interaction with the IR community. Beyond our
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technical contributions, our approach strives to forge stronger
conceptual ties between ongoing work in bug localization and
proven practices from the IR community.

We introduce BLUiR (Bug Localization Using information
Retrieval), an automatic bug localization tool based on the
concept of structured information retrieval. Rather than build
BLUiR’s IR indexing and retrieval system from scratch, we
instead build upon an existing, highly-tuned, open source IR
toolkit, Indri [40]. While we use an off-the-shelf IR tool, we
simultaneously stress the importance of using it effectively,
i.e., recognizing and addressing domain-specific particulars of
bug localization. In our work, we extract and model code
constructs like structured documents, and we show how a
seemingly trivial change to how camel case identifiers are
indexed yields significantly improved localization accuracy.

We evaluate BLUiR using the same large-scale benchmark
on which BugLocator was evaluated. When bug similarity data
is not used, the off-the-shelf IR tookit (unmodified) already
exceeds BugLocator’s accuracy. With our enhancements (e.g.,
structural modeling and indexing camel case identifiers as-is),
accuracy is significantly improved further. Modeling additional
bug similarity data provides yet a further gain. Finally, even if
BugLocator is given bug similarity data and BLUiR is not,
BLUiR still outperforms BugLocator on three of the four
code repositories and matches its accuracy on the fourth. For
reproducibility, data from our experiments is available online.1

Contributions. We present: 1) new techniques for increas-
ing localization accuracy, particularly modeling of source code
structure; 2) new state-of-the-art accuracy for bug localization
on a public community benchmark, built on a proven, open
source IR toolkit anyone can use; and 3) thorough ground-
ing of IR-based bug localization research in fundamental IR
theoretical and empirical knowledge and practice.

II. BACKGROUND

We begin this section with a demonstrative example of IR-
based bug localization. The fundamental assumption underly-
ing these techniques is that some terms in a given bug report
will be found in source files needing to be fixed for that bug.
Figure 1 presents a real world bug report from Eclipse 3.1 and
corresponding source code fix, taken from [46]. The Figure
shows matching words (in bold font) found in both the bug
report and one of the corresponding source code files that was
ultimately fixed for that bug.

In IR-based bug localization, a software system’s source
code files represent the document collection to search, with
each bug report being a search query. Finding candidate files
to fix is then reduced to standard IR ranking of documents
(source files) based on estimated relevance to each query (bug
report). The better an IR system can interpret the bug report
and source files, the more accurately it is expected to highly
rank the source files needing to be fixed. While deep semantics
remain elusive, shallow matching often works quite well.

1http://users.ece.utexas.edu/~perry/work/esel/bl/

Fig. 1. An example of a bug localization [46]

A. Information Retrieval (IR)
For a broad overview of IR, see [23] online. An IR system

typically begins with three-step preprocessing: text normaliza-
tion, stopword removal, and stemming. Normalization involves
removing punctuation, performing case-folding, tokenizing
terms, etc, ultimately defining the initial vocabulary in which
queries and documents will be represented. Next, a set of
extraneous terms identified in a stopword list (e.g., “to”, “the”,
“be”, etc.) are filtered out in order to improve efficiency and
reduce spurious matches. Finally, stemming conflates variants
of the same underlying term (e.g., “ran”, “running”, “run”) to
improve term matching between query and document.

While these three preprocessing steps are often given short
shrift in describing IR approaches, they embody important
tradeoffs that can significantly influence the ultimate success
or failure of the retrieval model. For example, normalization
can increase matches between query and document by case-
folding (improving recall), but this can also introduce spurious
matches as well (hurting precision). Similarly, while stopword
removal can reduce unhelpful term matching (e.g., “to”), any
stopword removed is almost certain to hurt matching for some
particular query (e.g., “to be or not to be”). Finally, stemming
will similarly increase recall by conflating variants of the same
underlying term, but this may also introduce false matches. For
reproducible experimentation, preprocessing methods should
be fully described along with other details of IR model.

Once queries and documents have been pre-processed, doc-
uments are indexed by collecting and storing various statistics,
such as term frequency (TF, the number of times a term
occurs in a given document), and document frequency (DF, the
number of documents in which the term appears). IDF refers to
inverse (dampened) DF, most simply formulated as log( N

DF ),
where N is the number of documents in the colleciton.

A widespread misconception about TF.IDF merits particular
attention. Specifically, “The TF.IDF model is often used as
a baseline model for comparison with new retrieval models.
However, it is not actually a well-defined model, in the sense
that there are several heuristic components in the model that
can affect performance significantly.” [44]. For greater detail,
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see [37], [32], [34]. Many studies have claimed improvement
over TF.IDF using only the most naive version of the model,
or simply report a TF.IDF baseline without fully specifying
what TF.IDF model was actually used. In contrast, BugLocator
fully-specified the TF.IDF formulation they defined [46]. How-
ever, this raises a related issue: it is not clear how their
formulation differed, conceptually or empirically, to other
existing, state-of-the-art TF.IDF variants. We advocate always
trying simple, well-tuned, existing models first, then fully
describing and motivating whatever TF.IDF variant is used.

III. PRESENCE OF SOURCE CODE TERMS IN BUG
REPORTS: AN EMPIRICAL STUDY

The success of IR-based bug localization is dependent on
effectively matching the bug report to source files needing to
be fixed. As discussed in Section II, even preprocessing issues
can significantly impact IR accuracy. The classic IR challenge
lies in effectively recognizing important terms in the query and
document, and assigning each greater weight for matching.
With regard to text length, long queries (e.g., when using the
bug report’s description field) can obscure key search
terms [18]. Document length also merits special attention [38].
Both topics are further discussed in Section IX-C.

Another classic IR approach distinguishes and separately
models different fields when text is structured [4], [31]. For
example, while searching documents, Google considers page
title, different anchor texts, and body separately [4]. We inves-
tigate this structured approach to IR-based bug localization.
With queries, a bug report contains separate summary and
description fields; whereas the summary provides essen-
tial keywords, the description is more verbose with additional
terms. As discussed in the next section, source code files are
even more structured. We perform preliminary analysis here
to assess the degree to which source code terms appear in bug
reports, potentially providing an opportunity for better IR.

We distinguish six types of terms. Query terms come from
different bug report fields: the concise summary and verbose
description). Parsing source code structure also lets us
distinguish four different document fields: class, method,
variable, and comments. These fields are extracted by
constructing and traversing the abstract syntax tree (AST) of
the subject program (Section IV-A). For each bug report, we
separately search for terms from each document field in source
files that were fixed for the corresponding bug. We collect
two separate sets of statistics: matching terms “as is” in their
original form vs. splitting identifier names based on the camel
case heuristics and searching for each token.

To illustrate, for the given example in Figure 1, first we
search ConsoleView, and then the separate terms console
and view, in both the bug summary and bug description. For
each search, we exclude those tokens that either are stop words
or have less than three characters. For example, if a variable
name is isBalancedTree, we do not search for “is”.

Table I provides empirical evidence that terms from source
files to fix in AspectJ are present in the corresponding bug
reports. Each entry represents the number of bug reports
in which different term types (class, method, variable, or

TABLE I
PRESENCE OF DIFFERENT TERM TYPES IN BUG REPORTS FOR ASPECTJ

Term Type Summary Description
Exact match Token match Exact mach Token match

Class 27 (9.44%) 101 (35.31%) 148 (51.74%) 244 (85.31%)
Method 43 (15.03%) 205 (71.67%) 187 (65.38%) 277 (96.85%)
Variable 107 (37.41%) 125 (43.70%) 230 (80.42%) 252 (88.11%)
Comments N/A 235 (82.16%) N/A 278 (97.20%)

comment) were found. For each bug report section (summary
vs. description), we count the number of bug reports
containing an exact match or token match for at least one
of the files to be fixed. For example, the first two numbers in
the “class” row of Table I represent that in 27 bug reports in
AspectJ, at least one of the class names of the fixed files was
present as-is in the bug summary, whereas in 101 bug reports at
least one of the class name’s split tokens was present. From the
Table, we see that although summary contained only the 3% of
total terms in the bug report, at least one of the (class, method,
variable, comment) terms was found in (35%, 72%, 43%, 82%)
of the bug summaries, respectively. Similarly, although class
name is typically a combination of 2-4 terms per source code
file, they are present in more than 35% of the bug summaries
and 85% of the bug descriptions. Furthermore, the exact class
name is present in more than 50% of the bug descriptions. We
can observe a similar phenomena for method names as well.

While the bug report description vs. summary has many
more matches, the more verbose description likely
matches many irrelevant terms as well. Similarly, Table I only
shows matches from the source files needing to be fixed. The
bug reports also include terms matching many other source
files not needing to be fixed. Consequently, this Table provides
suggestive rather than conclusive evidence for our approach;
evaluation later in the paper will demonstrate the empirical
effectiveness of modeling this information. We intentionally
restrict the analysis here to AspectJ only, reserving the other
three source code repositories for later blind evaluation to
maximize generality of our findings.

IV. APPROACH

In the previous section, we showed that important program
constructs such as class names and method names are present
in many bug reports and thus might be effectively used to
improve bug localization. This section describes our structured
IR-based approach for localizing bugs.

A. BLUiR Architecture

Figure 2 shows the overall architecture of BLUiR. First
BLUiR takes as input the source code files in which we
would like to localize the bugs. Next, it builds the abstract
syntax tree (AST) of each source code file using Eclipse
Java Development Tools (JDT), and traverses the AST to
extract different program constructs such as class names,
method names, variable names, and comments. Then BLUiR
tokenizes all the identifier names and comment words, as
described in Section IV-B. This information for each source
file is then stored as a structured XML document.
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Fig. 2. BLUiR Architecture

Reducing bug localization to a standard IR task enables
us to exploit a wealth of prior theoretical and empirical
IR methodology, providing a robust foundation for tackling
bug localization. We adopt the Indri toolkit [40] for efficient
indexing and developing our retrieval model. After XML
documents are created above, they are handed off to Indri
for stopword removal, stemming, and indexing. Note that we
used the default stopword list provided with Indri.

Each bug report is similarly tokenized, then handed off to
Indri for stopping, stemming, and retrieval (Section IV-C).

B. Source Code Parsing & Term Indexing

In comparison to prior approaches, we make two improve-
ments in our preprocessing. First, prior work has indexed all
source code terms except English stopwords and programming
language keywords. However, some keywords like String or
Class are used in identifier names and may be found in bug
reports. For example, in AspectJ, many identifiers use Java
language keywords, e.g., if, else, etc. Therefore, instead of
pruning all language keywords, we instead build the Abstract
Syntax Tree (AST) of each source file and extract all identifier
names (class name, method name, variable name etc.). In
this way, we exclude language keywords without losing their
presence in identifiers.

Secondly, identifiers are typically split into tokens for
indexing to improve recall. Dit et al. [8] compared simple
camel case splitting to the more sophisticated Samurai [10]
system and found that both performed comparably in concept
location. We therefore adopt camel case splitting for its
simplicity. However, since our analysis in Table I reveals that
full identifiers are often present in bug reports in the form of
execution traces of exceptions, test cases or code snippets, we
index full identifiers as well as split tokens. Although it is a
very simple extension, we will see that it yields significant
improvement.

C. Retrieval Model

As discussed in Section II-A, TF.IDF is not actually a
well-defined model, and different TF.IDF variants can achieve
vastly different empirical performance in practice. We adopt
Indri’s built-in TF.IDF formulation (from its parent project

Lemur), based upon the well-established BM25 (Okapi)
model [32]. This TF.IDF model has been rigorously evaluated
over a decade of widespread use in IR. We elaborate below.

Assume that a document and a query are represented by a
weighted term frequency vector ~d and ~q respectively of length
n (the total number of terms or the size of vocabulary).

~d = (x1, x2, ......, xn) (1)
~q = (y1, y2, ....., yn) (2)

Each element of xi of ~d represents the frequency (count) of
term ti in document d (similarly, yi in query ~q).

Generally, in a vector space model, query and document
terms are weighted by a heuristic TF.IDF weighting formula
instead of only their raw frequencies. Inverse document fre-
quency (IDF) diminishes the weight of terms that occur very
frequently in the document set and increases the weight of
terms that occur rarely. Weighted vectors for ~d and ~q are thus:

~dw = (tfd(x1)idf(t1), tfd(x2)idf(t2), ..., tfd(xn)idf(tn)) (3)
~qw = (tfq(y1)idf(t1), tfq(y2)idf(t2), ..., tfq(yn)idf(tn)) (4)

Given a collection C of source files, the simplest, classic
IDF formulation for term t is given by idf(ti) = log N

nt
, where

N is the total number of documents in C and nt is the number
of documents with term t. In the simplest TF-IDF model, we
would simply multiply this value by the term’s frequency in
document d to compute the TF-IDF score for (t, d), then sum
over all terms in the query to arrive at the d’s TF-IDF score.

As mentioned above, however, actual TF-IDF models used
in practice differ greatly from this for improved accuracy [37],
[32]. We adopt Indri’s TF.IDF model [44], which is summa-
rized below.

To begin, the IDF value is smoothed as follows to avoid
division by zero, which would otherwise occur whenever a
particular term appears in all documents: idf(ti) = log N+1

nt+0.5 .
The document’s tf function is computed by Okapi:

tfd(x) =
k1x

x+ k1(1− b+ b ld
lC

)
(5)

where k1 is a tuning parameter (≥ 0) that calibrates document
term frequency scaling. The term frequency value quickly
saturates for a small value of k1, whereas, a large value
corresponds to using raw term frequency. b is another tuning
parameter between 0 and 1, which is the document scaling
factor. Recall our earlier discussion of BugLocator introducing
a heuristic for modeling document length, whereas this is
already built into IR models today (Section I). Here, when the
value of b is 1, the term weight is fully scaled by the document
length. For a zero value of b, no length normalization is
applied. ld and lC represents the document length and average
document length for the collection respectively.

The query’s TF function tfq is defined similarly tfd though
b = 0 is fixed since the query is fixed across documents
being compared, and thus normalization of query length is
unnecessary:

tfq(y) =
k3y

x+ k3
(6)

In Equation, 6, the value of k3 is fixed to 1000 to obtain
almost the raw query term frequency because in query the
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probability of having a term many times is rare. Now the
similarity score of document ~d against query ~q is given by
Equation 7.

s(~d, ~q) =

n∑
i=1

tfd(xi)tfq(yi)idf(ti)
2 (7)

D. Incorporating Structural Information
The TF.IDF model presented in Equation 7 does not con-

sider source code structure (program construct)–i.e., each term
in a source code file is considered having the same relevance
with respect to the given query. Therefore, important informa-
tion like class names and method names often get lost in the
relatively large number of variable names and comments terms
due to the term weighting function (Equation 5). Therefore, if
a source code file with class name “A” also contains 10 other
variable names having the term “A”, then the class name “A”
does not add much weight. Thus, if there is a bug report related
to class “A”, it will rank another file higher if the file has the
term “A” more than 11 times even in the local variable names
or comments. Our proposed model distinguishes different code
constructs to overcome this problem.

As we described in Section III, we distinguish two alterna-
tive query representations coming from different fields of the
bug report (the summary and the more verbose description).
Parsing source code structure also lets us distinguish four
different document fields: class, method, variable, comments.
To exploit all of these different types of query and document
representations, we perform a separate search for each of the
eight (query represent, document field) combinations and then
sum document scores across all eight searches.

s′(~d, ~q) =
∑
r∈Q

∑
f∈D

s(df , qr) (8)

where r is a particular query representation and f is a
particular document field. The benefit of this model is that
terms appearing in multiple document fields are implicitly
assigned greater weight, since the contribution from each term
is summed over all fields in which it appears. While our
method of integrating structural information is quite simple,
more sophisticated methods for integrating structural informa-
tion exist and could be explored in future work, e.g., doing
a weighted combination rather than a simple sum, or better
yet, weighting term frequencies rather than document fields to
better control for term frequency saturation [31].

V. EVALUATION SETUP

A. Data Set
We have used the same dataset that Zhou et al. [46] used

to evaluate BugLocator. This dataset contains 3,379 bug re-
ports in total from four popular open source projects–Eclipse,
AspectJ, SWT, and ZXing along with the information of fixed
files for those bugs. Table II describes the dataset in more de-
tail. Since we would like to compare BLUiR with BugLocator,
the same dataset allows us to get comparable results. Among
the four subject systems in the dataset, we always use AspectJ
for learning purposes (to tune the parameters) so that we do
not overfit our retrieval model. We chose AspectJ system as

TABLE II
DETAILS OF BENCHMARK

Project Description Period #Bugs #Files
SWT 3.1 Widget toolkit for Java 10/04-04/10 98 484
Eclipse 3.1 Popular IDE for Java 10/04 03/11 3075 12863
AspectJ Aspect-oriented exten-

sion to Java
07/02-10/06 286 6485

ZXing Barcode image process-
ing library for Android

03/10-09/10 20 391

training dataset because it has 298 bugs, which is neither too
large nor too small. We have also compared our results with a
similar version of dataset (for AspectJ and Eclipse) that were
used in evaluating BugScout (Table VII).

B. Evaluation Metrics
Since an IR system’s value is in direct proportion to how

well it serves its users, the design and selection of appropriate
evaluation metrics has been a topic of considerable study
in IR. We should select a sufficient yet minimal set of
metrics to ensure what we measure provides an appropriate
and comprehensible yardstick for assessing the most pertinent
aspects of performance. We err on the side of excess and
comparative evaluation, including all five metrics as Zhou et
al. [46]; other systems we compare to use a subset of these
metrics. All metrics are based on gain rather than loss (larger
values indicate better performance).

Recall at Top N: This metric reports the number of bugs
with at least one buggy source file found in the top N (= 1, 5,
10) ranked results (once the first buggy file is located, it may
become easier for the developer to find the rest). Since we are
only considering the top few ranks, and only requires finding
one of the buggy files per bug, this metric emphasizes early
precision over total recall.

Mean Reciprocal Rank (MRR): Like “Recall at Top N”,
MRR emphasizes early precision over recall. The reciprocal
rank for a query is the inverse rank of the first relevant
document found. MRR is the reciprocal rank averaged over
all queries:

MRR =
1

|Q|

|Q|∑
i=1

1

ranki
(9)

Mean Average Precision (MAP): MAP is by far the most
commonly used, traditional IR metric. It takes all the faulty
files into account with their ranks. Therefore, MAP emphasizes
recall over precision, and is favored in scenarios in which users
will go deep in a ranked list to find many relevant results. The
Average Precision of a single query is computed as:

AP =

M∑
k=1

P (k)× pos(k)

number of positive instances
(10)

where k is the rank, M is the number of retrieved source files,
and pos(k) is a binary indicator of whether or not the item at
rank is a buggy file. P (k) is the precision at the given cut-off
rank k. The MAP for a set of queries is simply the mean of
the average precision values for all queries.

Note that all metrics above compute an arithmetic mean over
the query set to measure average performance. This may not
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TABLE III
EFFECT OF DIFFERENT STEMMERS AND PARAMETERS ON ASPECTJ

Term Weighting Stemmer Top 1 Top 5 Top 10 MAP MRR
none 29 93 134 0.12 0.22

k1 = 1000, b = 0 Krovetz 29 97 134 0.12 0.22
Porter 27 99 135 0.12 0.21

k1 = 1.2, b = 0.75 Krovetz 77 130 162 0.20 0.37
k1 = 1.0, b = 0.3 Krovetz 79 131 168 0.20 0.37

be appropriate if developer satisfaction is driven by worst-case
performance rather than average performance, in which case
a geometric mean may be more appropriate. Figure 3 presents
a per-query analysis of results, inspecting the performance of
each query instead of only the average.

C. System Tuning
As we described in Section V-A, we use AspectJ as

training dataset to choose stemmer and tune two parameters
of our model: the term weight scaling parameter k1 and
the document normalization parameter b. Table III compares
system performance with no stemmer vs. using two popular
stemmers: Krovetz and Porter. For this experiment (only), we
use approximately raw TF.IDF with k1 = 1000, and b = 0.
We observe no significant difference among the three methods.
In prior work, Hill et al. [13] also observed that no single
stemmer is better for all kinds of queries. While we choose
Krovetz somewhat arbitrarily, as the more conservative of the
two stemming algorithms, closer analysis here appears to be
warranted to provide a fuller explanation.

Table III shows results of tuning k1 and b. These experi-
ments exclude modeling of source code structure. Traditional
wisdom is to set k1 = 1.2 and b = 0.75. However, since bug
localization is different from traditional text retrieval, we did
a linear sweep of all values between 0:2 for k1 and 0:1 for b
(with step-size 0.1), selecting k1 = 1.0 and b = 0.3 as optimal.

VI. RESULTS

This section presents the evaluation results of BLUiR while
performing bug localization on the four subject systems de-
scribed in Table II. We mainly answer five research questions
that show the effectiveness of different improvements that we
made in developing BLUiR, and compare the results of BLUiR
with other information retrieval models and tools.

RQ1: Does indexing the exact identifier names improve
bug localization? In section III, we observed that in many
bug reports of AspectJ, different kinds of source code entity
names (e.g. class name, method name) are present exactly as-
is. In this research question, we investigate the effectiveness of
adding full identifier names as well as tokenized identifiers to
the index. Our experiments in this section exclude source code
structure. Results are reported for all four subject systems, first
with only the tokenized identifier names and then with the
combination of tokenized and full identifier names.

Table IV presents the result of indexing both. The evalu-
ation results show that the addition of exact identifier names
improved the accuracy for three of four subject systems. In
Eclipse, using exact identifier names, BLUiR localized 217
(7.05%) more bugs in Top 1 file, whereas, the increases are

TABLE IV
EFFECT OF INDEXING FULL IDENIFIER NAMES

System Indexed Top 1 Top 5 Top 10 MAP MRR
SWT Tokens 29 72 82 0.41 0.48

Both 37 71 84 0.47 0.54
Eclipse Tokens 529 1121 1415 0.20 0.27

Both 746 1378 1647 0.26 0.34
AspectJ Tokens 79 131 168 0.20 0.37

Both 87 147 175 0.22 0.41
ZXing Tokens 8 11 12 0.35 0.48

Both 7 11 12 0.35 0.45

TABLE V
EFFECT OF MODELING SOURCE CODE STRUCTURE

System Structure Top 1 Top 5 Top 10 MAP MRR ET/Qi(s)

SWT N 37 71 84 0.47 0.54 0.05
Y 54 75 85 0.56 0.65 0.21

Eclipse N 746 1378 1647 0.26 0.34 0.44
Y 952 1636 1933 0.32 0.42 5.45

AspectJ N 87 147 175 0.20 0.37 0.57
Y 92 146 173 0.24 0.41 4.22

ZXing N 7 11 12 0.35 0.45 0.08
Y 8 13 14 0.38 0.49 0.25

8.16% and 2.79% for SWT and AspectJ respectively. The
consistently higher MAP and MRR for the first three subject
systems show the overall improvements of the ranking due to
adding exact identifiers. In ZXing, the Top 1 and MRR metrics
were a little bit lower than the traditional one, while other
metrics were exactly the same. However, it is very difficult
to derive any useful conclusions from ZXing because the bug
dataset has only 20 bugs for this subject system.

RQ2: Does modeling source code structure help improve
accuracy? In section III, we argued that source code structure,
i.e., distinguishing different code constructs could be effec-
tively used to find more important terms in both source code
and bug report and thus improve the overall bug localization
accuracy. In this research question, we investigate whether
this improves the accuracy of bug localization and, if so, how
much. To this end, we ran BLUiR on all the subject systems to
localize bugs with and without modeling source code structure.

Table V results show that in most cases, BLUiR performed
better in terms of all the metrics when it considered different
program constructs. More specifically, structured retrieval is
more effective for Top 1. Using structured retrieval, BLUiR
localized 17 (17.35%), 206 (6.70%), 5 (1.74%), and 1 (5%)
more bugs in SWT, Eclipse, AspectJ, and ZXing respectively
within top 1 file. In AspectJ, for Top 5 and Top 10, BLUiR
localized a few less bugs using structured retrieval. However,
the high MAP and MRR shows that the overall ranking is
much better when BLUiR used structured retrieval. Further
qualitative analysis is presented in Section VII.

Runtime Overhead: Since structured information retrieval
involves more computation than the normal text retrieval, the
runtime overhead of structured information retrieval is ex-
pected to be higher. To investigate this overhead, we computed
the average execution time per query (ET/Qi) of BLUiR both
for traditional retrieval and structured retrieval (Table V). The
results show that structured retrieval is more costly and the
overhead depends on the size of document collection. The
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specific cost varies from about 3x to 12x. However, since
all the execution times are less than 6 seconds, the added
cost from the developers perspective is negligible. Moreover,
structured information retrieval due to its higher accuracy may
save quite a bit of the developers time overall.

RQ3: Does BLUiR outperform other bug localization
tools and models? While evaluating BugLocator, Zhou et
al. [46] compared their model with other prior work, and
showed that BugLocator consistently performed best. We
therefore compare BLUiR to with BugLocator, which is, to
the best of our knowledge, the most accurate tool presently.

Table VI shows results of BLUiR and BugLocator for the
given dataset, using and without using similar bug report data.
BugLocator results are copied verbatim from [46]. It should
be noted that we use the same datasets used to evaluate
BugLocator. In this section, we restrict our discussion to
results without using bug similarity data.

Comparing each metric of each system, we can see that, for
ZXing, the results produced by both tools are almost the same.
As we explained earlier, it is very difficult to derive any useful
conclusions from ZXing because the bug dataset has only 20
bugs for this subject system. However, looking into the results
of other systems, which have more bug reports (98 for SWT,
3075 for Eclipse, and 286 for AspectJ), we can clearly see
the that BLUiR outperformed BugLocator by a great margin.
BLUiR localized 23 (23.47%) more bugs in SWT, 203 (6.60%)
more bugs in Eclipse, and 27 (9.44%) more bugs in AspectJ
ranked within the top 1 file. The same trend is observed for
other metrics as well. The consistently higher MAP and MRR
for BLUiR also suggest that the overall ranking of the buggy
files produced by BLUiR are better than that of BugLocator.

Now we investigate the number of queries for which BLUiR
actually performed better than BugLocator because the higher
number of bugs located in top 1, 5, and 10 files retrieved by
BLUiR than that of BugLocator does not necessarily mean
that BLUiR performed well for all queries. Figure 3 shows
per-query performance of BLUiR compared to BugLocator on
SWT, where X axis represents the query number and Y axis
represents the difference between the best rank of the buggy
files by BLUiR and that of BugLocator. The negative value
represents the query where BugLocator performs better than
BLUiR. We can see that for 47 queries BLUiR performed
better, for 14 queries BugLocator performed better, and for
35 queries both tools perform exactly the same. This results
suggest that BLUiR performed better than BugLocator for
most of the queries. Interestingly, we also observe that for 12
bug reports BLUiR improved the rank of buggy files by more
than 10 positions, whereas it is only two where BugLocator
improved the rank by more than 10 positions (64 and 85
positions). As a result, BLUiR places more buggy files within
top 1, 5, and 10 files in the rank list than BugLocator.

This analysis required access to per-query results from
BugLocator, made possible by its executable being publicly
available. Unfortunately, it crashed when run on the other three
collections, and we could not reach the authors for assistance
in time for this submission. This analysis is therefore limited
to SWT only.

TABLE VI
BLUIR VS BUGLOCATOR

System Method SB Top 1 Top 5 Top 10 MAP MRR
BugLocator N 31 64 76 0.40 0.47

SWT BLUiR N 54 75 85 0.56 0.65
BugLocator Y 39 66 80 0.45 0.53
BLUiR Y 55 75 86 0.58 0.66
BugLocator N 749 1419 1719 0.26 0.35

Eclipse BLUiR N 952 1636 1933 0.32 0.42
BugLocator Y 896 1653 1925 0.30 0.41
BLUiR Y 1013 1729 2010 0.33 0.44
BugLocator N 65 117 159 0.17 0.33

AspectJ BLUiR N 92 146 173 0.24 0.41
BugLocator Y 88 146 170 0.22 0.41
BLUiR Y 97 150 176 0.25 0.43
BugLocator N 8 11 14 0.41 0.48

ZXing BLUiR N 8 13 14 0.38 0.49
BugLocator Y 8 12 14 0.44 0.50
BLUiR Y 8 13 14 0.39 0.49

Fig. 3. Query wise comparison of BugLocator and BLUiR for SWT

We also compare our results to BugScout [25] and
BugLocator in Table VII. To evaluate BugScout, Nguyen et
al. used AspectJ and Eclipse as their subject systems. Since
our datasets are not exactly the same as theirs, we present the
differences between two datasets in terms of number of bugs
in the Table. We have also interpreted the recall at Top 1, Top
5, and Top 10 of BugScout results from a Figure in their paper,
which may slightly differ from their actual value. Results show
that BLUiR outperformed BugScout consistently.

Recently, Sisman and Kak [39] incorporated version histo-
ries in IR-based bug localization. They proposed two models,
namely the Modification History based Prior and the Defect
History based Prior models, to estimate a prior probability
for each file in a project having bugs. They used these priors
to rank documents in addition to different models. Based on

TABLE VII
COMPARISON OF BUGSCOUT AND BUGLOCATOR WITH BLUIR

System Description BugScout BugLocator BLUiR
Number of Bug Reports 271 286 286

AspectJ Top 1 11% 23% 32%
Top 5 26% 41% 51%
Top 10 35% 56% 60%
Number of Bug Reports 4,136 3,075 3,075

Eclipse Top 1 14% 24% 31%
Top 5 24% 46% 53%
Top 10 31% 56% 63%
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a case study on AspectJ, they showed that version histories
improved the MAP as much as 30%. However, without con-
sidering any version history information, BLUiR performed
(MAP: 0.2396) better than their best results (MAP: 0.2258).

RQ4: Does our approach compensate for the lack
of similar bug information? Although the performance of
BugLocator improved a lot after using similar bug fixes
information, one of our main objectives is improving bug
localization without using the similar bug information, since
most real world projects do not explicitly have that informa-
tion. In addition, reconstructing the similar bug fix information
is also not a trivial task. Therefore, we investigate how BLUiR
performs in locating bugs compared to BugLocator even when
BugLocator uses similar bug information. The comparative
results presented in Figure VI show that in most cases, the
MAP and MRR of BLUiR are higher than that of BugLocator,
which indicates that BLUiR overall performed better even
when BugLocator considered similar bug information. For
example, BLUiR localized 17 more bugs in SWT, 56 more
bugs in Eclipse, and 4 more bugs in AspectJ than BugLocator
within top 1 file.

We were also curious to see if we could capture those
bugs that were localized by BugLocator using similar bug
information. To this end, we ran BugLocator on SWT using
(α = 0.2) and not using (α = 0) similar bug information.
We found 10 such bugs in total, that have been placed within
top 1, 5, or 10 files by BugLocator after using similar bug
information. Interestingly, we found that BLUiR could localize
all the bugs without using similarity information.

RQ5: Does similar bug fix information further improve
our model? We implemented the same technique for incor-
porating similar bug information to BLUiR that Zhou et al.
[46] did in developing BugLocator. By comparing the results
of BLUiR in Table VI, we can see that the similar bug
information further improved our results. For example, it helps
BLUiR localize 61, 93, and 77 more bugs ranked in the top 1,
5, and 10 files respectively for Eclipse project. It also improved
1 bug localization in SWT and 5 in AspectJ within top 1 file.
However, the overall improvement due to using similar bug
information was not as large as that of BugLocator. Therefore,
here we can conclude that BLUiR can compensate for the
lack of similar bug information partially because we already
localized many bugs without using similar bug fix information,
which were only localized by BugLocator using similar bug
information. BLUiR can also make use of the similar bug fix
information to improve the model further, if it is available.

Other Results. We briefly report preliminary experiments
with pseudo-relevance feedback (PRF, Section IX-B) using
Indri. The primary advantage of using PRF is that we do
not need to know any prior information (e.g., similar bugs)
about relevant documents while running query. In PRF mode,
Indri basically performs the general retrieval first, and then
augments the original query by taking the m most frequent
words from top r documents. There is also a tuning parameter
α for weighting original query and augmented terms. Finally,
the augmented query is run again to get the final rank list. We
experimented with different values of m, n, and α, but did not

observe improved accuracy. In future work, we would like to
explore this idea further.

VII. QUALITATIVE ANALYSIS

The previous section presented quantitative results showing
BLUiR’s improvement on average over BugLocator. In this
section, we dig into several queries in detail to better under-
stand why BLUiR performs better in most cases. Consider
SWT bug report #87676:

Summary: Double-click only works on a tree’s column0
Description: Using the log view as an example, double-

clicking on column0 brings up the event dialog as it should.
double-clicking on column1, column2 results in no notification
to our double-click listener.

For this bug only one file was fixed, and that is
org.eclipse.swt.widgets.Tree.java. By reading
the bug report and seeing the file name of the fixed file,
one might think at a glance that this file can be identified
easily. However, identifying a buggy file in a real world
project is not that easy, especially where there are many
other such similar files. For example, in SWT there are at
least 10 other files (TreeColumn.java, TreeEvent.java, TreeLis-
tener.java, TreeAdapter.java, TreeItem.java etc.) that deal with
tree and have this word in their file names. Thus, for a
developer who did not originally implement the functionality
of tree might think TreeColumn and TreeListener are more
important because the bug report contains the words column
and listener. Furthermore, the bug report has some other
words such as double click, event, dialog, which
are contained many times in more than 30 other files such
as Text.java, Widget.java, Button.java, and so on. Therefore,
finding the desired files from the IR perspective is also very
challenging. Relying on only length of the files is certainly
not the solution of this problem.

As a result BugLocator placed the file, Tree.java, at 50th
position in the rank list. Fortunately, BLUiR first performs
all the field retrievals using both the bug summary and the
bug description, and then aggregates all the scores to finally
rank all the source code files. This results in the summary
words (e.g. tree) being used more advantageously. Further-
more, documents have search words (e.g. column, double
click) spread over more fields produce better results than
documents having search words found in one field. In this
way, BLUiR emphasizes on more important words in the
documents. As a result, BLUiR placed Tree.java at 3rd position
in the rank list. In this way, BLUiR improved the rank of buggy
files by more than 10 positions for 12 bug reports (e.g., bugs
#78856, #79419, #83262, and so on).

VIII. THREATS TO VALIDITY

This section discusses the validity and generalizability of
our findings. In particular, we discuss Construct Validity,
Internal Validity, and External Validity.

Construct Validity. We used two artifacts of a software
repository: source code and bug reports, which are generally
well understood. Our evaluation uses the same benchmark
dataset of bug reports and source code shared by Zhou at
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al. [46], enabling fair comparison and reproducible findings.
Metrics used for evaluation match those of Zhou at al. and
other prior work, are standard in IR, and are straightforward
to compute. Therefore, we argue for a strong construct validity.

Internal Validity. We utilize program constructs to rank
source code documents with respect to a given bug. Since we
have used all the subject systems written in Java, these are
mainly object-oriented (OO) constructs such as class names,
method names, and so on. In this sense, our approach is
language dependent. We expect our system could be easily
adapted to other OO languages (future work).

Since we are matching terms between bug reports and
source code, we assume meaningful identifier names and in-
clusion of comments, consistent with programming best prac-
tices. That said, poorly written source code would make bug
localization more difficult (for both IR or non-IR approaches).
Similarly, we also depend upon the quality of bug report, and
poorly written reports would likely also hurt IR and non-IR
methods. Our structural modeling approach matching source
code terms in bug reports likely benefits significantly from the
bug reports having been written by developers knowledgeable
of the underlying source code. Bug reports written by end-
users would likely show a far less pronounced effect.

We have used the same dataset as Zhou et al. [46]. While the
possibility exists of errors in their data, this seems quite low
since they have manually validated the dataset. Also, three of
our four subject systems represent system-specific projects. As
Hyrum et al. [41] noted, system-domain software may have its
own set of development biases. Therefore, we may not capture
some unique concerns, which are only present in the software
development targeted toward other domains.

External Validity. We have used only four subject systems
in our experiment and all of them are open source projects.
Although, they are very popular projects, our findings may not
be generalizable to other open source projects or industrial
projects. However, to maximize generalizability of findings
and minimize risk of over-fitting, we developed and tuned
BLUiR on only one subject system (AspectJ), reserving the
remaining three systems for final blind evaluation. This risk of
insufficient generalization could be mitigated by expanding the
benchmark to include more subject systems (both open source
and industrial). This will be explored in our future work.

IX. RELATED WORK

A. Automatic Bug Localization

Automatic bug localization or automatic debugging has
been an active research area for over two decades [36],
[35]. Existing techniques can be broadly categorized into two
categories: dynamic [1] and static [15]. Generally, dynamic
fault localization techniques can localize bugs very precisely
(such as at statement level). However, they require a test case
suite and need to execute the program for gathering passing
and failing execution traces. Furthermore, the approaches are
computationally expensive. Spectrum based fault localizations
[1], [17], [19], dynamic slicing [45], delta debugging [43] are
some of the well known techniques in this category.

Static approaches, on the other hand, do not require any
program test cases or execution traces. In most cases, they
need only program source code and bug reports. They are
also computationally efficient. The static approaches can be
also divided into two categories: i) program analysis based
approaches ii) IR-based approaches. FindBug [15] is a popular
bug localization tool based on static program analysis that can
detect bugs by identifying buggy patterns frequently happened
in practice. Therefore, FindBug does not even need a bug
report. However, it cannot detect semantic bugs.

B. Information Retrieval (IR)

While historical arguments debated which of three
traditionally-dominant IR paradigms was best (TF.IDF [34],
the “probabilistic approach” known as BM25 (Okapi) [32],
or more recent language modeling [26], all three approaches
have been shown theoretically to utilize the same underlying
textual features, and empirically to perform comparably when
well-tuned [11]. Consequently, while one formalism or another
might make it easier to integrate useful additional features, use
of one formalism or another is not particularly important when
it simply comes to baseline IR performance.

In contrast with shallow “bag-of-words” models, research
has also explored deeper methods matching “concepts” (often
poorly defined). While latent semantic indexing (LSI) induces
latent concepts, it is rarely used in practice today due to
errors in induced concepts introducing more harm than good.
While a probabilistic variant of LSI has been devised [14],
its probability model was found to be deficient. This led to
now ubiquitous latent dirichlet allocation (LDA) modeling [3].
While many studies have shown LDA can usefully infer
latent topics underlying a document collection, LDA is both
computationally expensive and operates without reference to
the input query. It has been shown that far simpler IR models
based on pseudo-relevance feedback (PRF) can efficiently
induce better topics on the fly for each query, tailored to the
query vs. query-independent LDA topics [42]. Consequently,
LDA models appear less useful for IR than simpler models
until this fundamental problem can be meaningfully addressed.

One issue considered in this paper was how to best utilize
multiple representations of the same bug report (i.e., its
summary and description). While the summary is very
succinct and likely provides the most important keywords, it
may lack other terms useful for matching (suggesting high pre-
cision but possibly low recall). In contrast, the more verbose
description may contain many other useful terms to match, it
likely contains a variety of distracting terms as well. This is a
very well-known problem in traditional IR [18]. For over two
decades, data from the Text REtrieval Conference (TREC) has
provided queries at three levels of verbosity, with researchers
devising various methods to maximally exploit these different
representations. For example, simply concatenating the two
representations together provides an easy way to emphasize
keywords while also including more verbose terms as well. In
this paper, our method of performing separate summary and
description searches and summing results is roughly equivalent
to such concatenation. Future work could explore a wide
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variety of more sophisticated IR methods for exploiting these
alternative query representations with varying verbosity.

C. IR-based Bug Localization

The value of document length normalization was recognized
in IR nearly two decades ago [38]. Empirical data compared
the length of documents predicted relevant by TF.IDF vs. the
length of actual relevant documents, showing that traditional
IR models are actually biased against longer documents. An
empirical correction for this bias was developed, it was real-
ized that this correction was already built-into BM25, and it
has been further shown that IR’s language modeling paradigm
performs implicit length normalization as well.

Several prior studies have investigated use of bug similarity
data in order to improve localization accuracy [46], [6]. This
idea can be seen as a close cousin to long-established methods
for incorporating relevance feedback (RF) data in IR [33].
While RF exploits the fact that knowing one or more doc-
uments relevant to the current query makes it much easier to
find other relevant documents, this knowledge is often seldom
available in practice. A “trinity” of related variants has been
theoretically and empirically established, showing that similar
queries should retrieve similar documents (and vice-versa),
and that similar documents should receive similar relevance
scores for the same query (score regularization) [7]. In fact,
the idea that the same documents should be relevant for similar
queries provides the foundation for search community question
and answer forums today [16]. Consequently, while use of
bug similarity data for localization represents a very valuable
adaptation of RF methods from traditional IR, there is a wide
spectrum of similar techniques and existing methodology that
might be further explored as well (e.g., the aforementioned
PRF, which infers relevant documents for feedback rather
requiring the user to supply them explicitly).

Concept location or feature location represents another
task closely related to bug localization. Generally, concept
location or feature location aims to identify the relevant parts
of a software system that implement a specific concept or
functionality. Thus, it is one of the most common activities
in program comprehension. Researchers have used a variety
of information retrieval techniques in feature location and
concept location as well. Marcus et al. [24] used LSI to find
modules related to a given feature in form of a user query.
Poshyvanyk et al. [28] used LSI first to rank source code
elements based on a given feature or bug reports, and then
used a Formal Concept Analysis to cluster the results. In
another work, Poshyvanyk et al. [27] formulated the feature
location problem as a decision-making problem in the presence
of uncertainty. The decision is taken based on the opinions
from two experts. The first expert is LSI, which enables users
to search static documents relevant to a feature. The second
expert is the Scenario Based Probabilistic ranking, which
helps user rank a list of entities, given a feature of interest,
by analyzing dynamic traces from the execution of different
scenarios. Gay et al. [12] incorporated RF in IR-based concept
location. Although bug reports were used as a concept/feature
in some of these studies, they were few in number.

X. CONCLUSION

Locating bugs is important, difficult, and expensive, particu-
larly for large-scale software projects. To address this, natural
language information retrieval (IR) techniques are increasingly
being used to suggest potential faulty source files given bug
reports. While these techniques are very scalable, in practice
their effectiveness remains low in accurately localizing bugs
to a small number of files.

Our key insight is that structured IR-based on code con-
structs, such as class and method names, enables more accurate
bug localization. We present BLUiR, which embodies this
insight, builds on an open source IR toolkit [40], requires
only the source code and bug reports, and takes advantage of
bug similarity data if available. We evaluate BLUiR on four
open source projects with approximately 3,400 bugs. When
bug similarity data is not used, the off-the-shelf IR tookit (un-
modified) already exceeds state-of-the-art tool, BugLocator’s
accuracy. With our enhancements (e.g., structural modeling
and camel case indexing), accuracy is significantly improved
further. Modeling additional bug similarity data provides yet a
further gain. Finally, even if BugLocator is given bug similarity
data and BLUiR is not, BLUiR still outperforms BugLocator
on three of the four code repositories in the benchmark.

Beyond our technical contributions, our presentation also
strives to forge stronger conceptual ties between ongoing
work in bug localization and proven practices from the IR
community, via a thorough discussion of IR-based bug local-
ization research in relation to fundamental IR theoretical and
empirical knowledge and practice.

In our future research, we would like to explore the
following areas to further improve our model: bug report
summarization and learning parameters.

Bug Report Summarization. In this paper, we showed how
the performance of bug localization improves by focusing on
condensed information such as bug summaries, class names, or
method names. However, we still used exactly the same long
bug descriptions from bug reports. There are some automatic
techniques [22] that can condense bug descriptions up to 30%
of its original size. Such summarized bug descriptions may
further improve the performance of bug localization.

Learning to Rank. To tune the value of k1 and b in our
model, we ran BLUiR on AspectJ using a range of values
at a fixed interval length and took the pair for which we
got the best result for other subject systems. However, the
best values may be different for different subject systems.
Finding a globally optimal weights is still an open problem
in IR research community. Recent work [20] in IR is using
machine learning methods to automatically optimize ranking
parameters for more sophisticated ranking functions. This
would provide another interesting direction for future studies.

We also plan to utilize other datasets (e.g., moreBugs [30])
and perform function/method level bug localization [9].
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