
Crowdworker Filtering with Support Vector Machine
Hohyon Ryu

School of Information
 University of Texas at Austin

hohyon@utexas.edu

Matthew Lease
School of Information

University of Texas at Austin
ml@ischool.utexas.edu

ABSTRACT
Crowdsourcing has been recognized as a possible technique
to complement costly user studies, usability studies,
relevance judgment for information retrieval studies, and
training set build-up for automatic document classification.
However, the quality of crowdworkers varies by diverse
factors and we often cannot tell whether their answers are
right or wrong immediately due to the lack of gold standard
answers. In this paper, we present a machine-learning based
crowdworker filtering technique that can be used to assess
workers immediately after they finish their assigned tasks.
A Support Vector Machine (SVM)-based crowdworker
filter, called a Smart Crowd Filter (SCFilter), was used to
predict the probability that each label is correct and
identifies those crowdworkers that consistently provide
answers that are unlikely to be correct. To verify the
performance of the SCFilter, a bad worker detection
simulation test and an experiment in an actual
crowdsourcing environment at the Amazon Mechanical
Turk (AMT) website were performed. In the simulation
test, bad worker detection performance was assessed in
terms of precision and recall. In the experiment at the AMT
website, a statistically significant improvement was
observed for automatic document classification.

Keywords
Crowdsourcing, Worker Qualification, Support Vector
Machine, Automatic Classification.

INTRODUCTION
Recently, crowdsourcing has attracted the attention of the
information science community as a possible technique to
complement costly user studies (Kittur, Chi, & Suh, 2008),
usability studies, relevance judgment for information
retrieval studies (Alonso, 2009), and training set build-up
for automatic document classification (Brew, Greene, &
Cunningham, 2010; Kazai, Kamps, Koolen, & Milic-

Frayling, 2011). However, the biggest trade-off for fast and
cheap answers is quality (Hsueh, Melville, & Sindhwani,
2009; Snow, O'Connor, Jurafsky, & Ng, 2008). The quality
of crowdworkers’ answers varies since these kinds of
workers do not operate under a controlled environment.
Also, we do not know the workers’ socio-economical
backgrounds, and we often cannot tell whether their
answers are right or wrong due to the lack of pre-existing
gold standard answers.

To minimize the impact of possible erroneous or abusive
answers from crowdworkers, answers from “bad” workers
need to be excluded from the training data. In this paper, we
present a machine-learning based crowdworker filter, called
a Smart Crowd Filter (SCFilter), which can predict the
quality of each of the workers by examining each of their
answers. The SCFilter is based on a Support Vector
Machine (SVM) which predicts the probabilities of each
answer for every example, and finds the crowdworkers
whose average probability of answers is below a given
threshold.

To verify the performance of the SCFilter, we first analyzed
the performance of bad worker detection in a simulation
test. This test used 3068 hand-labeled examples of
Infochimps1 documents that included title, description,
source, and user-assigned tags. Good and bad workers were
generated according to a preset error rate, and the SCFilter
was used to identify bad workers based on automatically
generated answers. After the simulation test, an experiment
was performed on the on Amazon Mechanical Turk
(AMT)2 website to verify the performance of the SCFilter
in an actual crowdsourcing environment. This AMT
experiment was performed to obtain labels for training
examples in order to predict the labels of 10447 unlabeled
examples of Infochimps documents. The SCFilter was
applied to the crowdworkers in the AMT website, and the
performance of SVM-based automatic categorization
trained on training labels filtered with the SCFilter was
compared to the unfiltered baseline.

RELATED WORK
Most traditional supervised machine learning systems have
relied on expensive human-labeled training sets produced

1http://www.infochimps.com
2https://www.mturk.com

This is the space reserved for copyright notices.

ASIST 2011, October 9-13, 2011, New Orleans, LA, USA.
Copyright notice continues right here.

mailto:hohyon@utexas.edu
mailto:ml@ischool.utexas.edu

by a small number of experts (Sebastiani, 2002). To avoid
expensive human labor to build training examples,
crowdsourcing has been utilized in multiple machine
learning studies. For example, Snow et al. (2008) assessed
the usability of AMT for natural language processing
problems, mostly for classification. Brew et al. (2010) used
crowdsourcing along with active learning for sentiment
classification, and Ambati, Vogel, & Carbonell (2010)
applied crowdsourcing and machine learning to machine
translation. Individual crowdworkers are usually not
experts, but the aggregation of the wisdom of the crowd can
often provide labels of fair quality that can partially or
entirely replace expensive expert labeling.

However, unlike expert annotators, the quality of
crowdworkers’ feedback is hard to control. The most
widely used way of measuring the quality of crowdworkers’
annotation is inter-annotator agreement. Nowak & Rüger
(2010) analyzed the degree of agreement between workers
for the same example and filtered out noisy annotations.
Another approach was used to balance the load between
machine learning and crowdsourcing to optimize the
machine learning performance. In addition, Quinn,
Bederson, Yeh, & Lin (2010) presented CrowdFlow that
tunes the balance between crowdworkers and machine
learning for optimal performance. Other approaches include
detecting extremely short task durations, verbal answer
analysis (Kittur et al., 2008), and using hidden gold
standard questions (Eckert et al., 2010). The task design
also affects the quality of crowdsourcing (Kazai et al.,
2011).

SMART CROWD FILTER
A Smart Crowd Filter (SCFilter) is a machine learning
based model that can be used to detect a “bad”
crowdworker, who randomly guesses labels or constantly
assigns wrong labels. Given a collection of N examples
X 1 : N , X 1: N can be partitioned into a seed set X 1 : M

and a test set X M +1: N . Trained on examples from the

seed set X 1 : M with Y 1 : M corresponding labels chosen

from categories C1 :∣C∣ , the SCFilter can be used to predict

the normalized probability of P (c∣x) for every possible

label for every example in the test set X M +1: N .

W denotes workers, and every worker w∈W is assigned
λ tasks. We defined a task to be a single labeling event in

which the worker is presented with the title, description,
and tags of a document with category options and asked to
categorize the document with one of the labels. For
example, a given worker w generates a label ŷ for a

given example x∈ X 1 :λ . The SCFilter predicts whether

the given worker w is good or not as shown in Figure 1.
SCF(w,t) returns 1 (w is a good worker) when the
average probability of w ’s label ŷ for x∈X is above a

threshold t , otherwise it returns 0 (w is a bad worker).

SIMULATION TEST

Test Collection
The test collection consists of a selection of documents of
obtained from the Infochimps website. As of April 26,
2011, there were 13515 document examples containing the
title, tags, description, and source of documents. An
example of an Infochimps document is as follows:

Title: Average Hours Worked Per Day by Employed Persons: 2005

Tags: America, persons, per, average, day, worked, employed, hours,
demographics, government, census, population

Description: The Statistical Abstract files are distributed by the US
Census Department as Microsoft Excel files. These files have data mixed
with notes and references, multiple tables per sheet, and, worst of all, the
table headers are not easily matched to their rows and columns.

Source: Census Bureau

The documents fell into thirteen categories including
Science, Computers, Engineering, Medicine, Economics,
Social Sciences, Geography, History, Linguistics, Poliltics
and Law, Art and Culture, Encyclopedic, and Sports.

Among these document examples, 3068 (22.7%) were
previously hand-labeled. 2068 examples were used as seeds
for initial SVM training, and the other 1000 document
examples were used for testing.

Experimental Design
The SVM was implemented with LIBSVM3 for Ruby4.
After testing different models by cross-validation, the linear
model was chosen. Let Z1 :∣W∣∈{1,0 } denote the quality

of workers such that Z i=1 if and only if w i is a good

worker. In the simulation test, a good worker Z i was

generated by a Bernoulli distribution (B) with probability
0.8, and labels for a good worker were also generated by a
Bernoulli distribution with probability 0.8. A bad worker
was assumed to follow a simple random model that chooses
a label c∈C uniformly at random. All other notations
followed the definitions in the section “Smart Crowd
Filter.” We simulated crowd labeling for the 1000 test

3http://www.csie.ntu.edu.tw/~cjlin/libsvm/
4https://github.com/tomz/libsvm-ruby-swig

function SCF(w , t):

 return{1, if
1
λ ∑

j=1:λ

P (ŷ j∣x j)>t (x∈X 1:λassigned to w)

0, otherwise

Figure 1. The function that was used to detect a bad
worker.

examples X M +1: N by generating labels ŷ M+1 : N as

shown in Figure 2. We set λ=5 , and thus ∣W∣=200 .

Results
Figure 3 shows the simulated bad worker detection
performance of the SCFilter in terms of precision, recall
and F-score. Precision, recall, and F-score in this
experiment were defined as follows:

Precision=
Numberof CorrectlyClassified Bad Workers

Workers Classified as Bad Workers

Recall= Number of Correctly Classified Bad Workers
Number of All Bad Workers

F−score=
2PR

P+R

When the precision was higher, the SCFilter filtered out
less bad workers and sacrificed fewer good workers. When
the recall was high, SCFilter detected more bad workers
and sacrificed more good workers. The F-score refers to the
harmonic mean of precision and recall. The result is the
average of five trials, and the SCFilter performed the best at
the threshold of 0.1 in terms of the F-score, which was 1.25

of the random selection probability (
1

13
=0.08). To filter

out all the bad workers (100% Precision = 37% Recall), we
had to sacrifice an average of 73% of the good workers at
the threshold of 0.28. However, a high F-score may not
guarantee the best performance improvement in terms of
document classification. The next experiment with the
AMT tests was done to determine the best threshold for
using the SCFilter for actual document classification.

PERFORMANCE TEST ON AMT

Test Collection
Some of the 10447 unlabeled Infochimps documents were
used in the AMT performance test. 250 examples were used
for the seed set to train the SCFilter, and 500 were used for
the training set. In sum, the SVM classifier was trained on
750 crowdsourced examples.

To evaluate the performance of the SVM classifier, 300
gold standard examples were randomly sampled from the
remaining examples and each example was labeled by ten
or more AMT crowdworkers. Among the 300 gold standard
examples, 82 examples were excluded from the gold
standard documents, since fewer than 30% of the
crowdworkers agreed on a single majority category.

Experimental Design
To verify the performance of the SCFilter in an actual
crowdsourcing environment, the crowdsourcing test was
performed at the AMT website. To initialize the SCFilter,
250 examples were crowdsourced by 50 workers, and the
performance of the SVM classifier with the filter was
compared to the gold standard examples. An AMT worker
labeled λ=5 randomly chosen examples. If the SCFilter
with a threshold predicted that a worker was a bad worker,
the worker’s answers were ignored. This process was
repeated until the number of valid workers reached 100.
Trained on the answers of 100 workers, the SVM classifier
was then used to predict the categories of the test set
examples. The predictions of the SVM classifier were
compared to the gold standard examples in order to
measure the performance of the classifier. This process was
done for six different thresholds including the baseline. The
algorithm for this process is presented in Figure 4. In Figure

1: for each w i∈W do

2: sample Z i∼B(.8)

3: for each x j∈ X (i−1)λ+1 :i λ do

4: Generate γ∼B(.8)
5: if Z i=1 and γ=1 then

6: generate ŷ j= y j

7: else

8: generate ŷ j=c∈C∼P (c)
9: end if
10: end for
11: end for

Figure 2. Algorithm for generating simulated
crowdworkers and labels.

1: W =∅
2: while ∣W∣ < 100 do

3: for each x j∈ X (i−1)λ+1 :i λ do

4: Let w∈W AMT label x j with ŷ j∈C
5: end for
6: if SCF (w , t) = 1 then

7: W ={W ,w }
8: end if
9: end while

Figure 4.Algorithm for a performance test on the AMT
website.

Figure 3. Simulated bad worker classification
performance of the SCFilter .

4, W is a set of accepted workers, and W AMT is the pool
of the AMT workers.

HIT (Human Intelligence Tasks) refer to a batch of tasks
presented to crowd workers at the AMT website. One HIT
includes 5 tasks. In each task, the title, tags, description,
and thirteen categories to choose from are shown to a crowd
worker. Every worker is paid $0.05 per HIT and the time is
limited to 8 minutes. With this HIT design, it takes 23
seconds in average to finish one given task. When the time
limit was higher, fewer workers were attracted and it took
more time to get the desired number of labels. It takes 1
minute and 55 seconds on average to finish 1 HIT.

Results
In the AMT performance test, the filtered training set
significantly outperformed the unfiltered baseline at the
expense of hiring more crowdworkers. Crowdsourcing
answers filtered with a threshold greater than 0.11 showed
statistically significant performance improvements at
p<0.01. The best trials at the thresholds 0.13 and 0.14
showed a 19.6% improvement from 0.51 to 0.61 in terms of
the F-score.

Table 1 shows the number of filtered out crowdworkers and
the classification performance per threshold. To achieve the
best performance at the threshold of 0.14, 306 workers were
filtered out. This presents a cost of about four times more
money than when using the unfiltered baseline. The
threshold of 0.13 achieved the same performance by
filtering out 207 workers, and the threshold of 0.11 yielded
a slightly lower performance (0.6 compared to 0.61) but it
filtered out only 116 workers which is 38% of that of the
threshold of 0.14. However, in practice, the requester may
sometimes refuse to pay the filtered out workers as they
would not be considered qualified workers.

Threshold 0 0.1 0.11 0.12 0.13 0.14

Additional workers 0 69 116 130 207 306

Precision 0.52 0.54 **0.61 **0.61 **0.62 **0.62

Recall 0.5 0.52 **0.59 **0.59 **0.6 **0.6

F-Score 0.51 0.53 **0.6 **0.6 **0.61 **0.61

Table 1. The performance test of the SCFilter when
tested in on the AMT website.

CONCLUSION
This paper presents a SCFilter that sorts out bad
crowdsourcing workers. In a simulation test on a hand-
labeled document collection, the SCFilter filtered out
70.8% of the bad workers while sacrificing an average of
about 9% of the good workers. In an actual crowdsourcing
environment, the SCFilter significantly improved the
automatic classification performance by 19.6% (with a 0.51

to 0.61 F-score improvement) at the threshold of 0.14,
which required about 306% more crowdworkers. In optimal
settings at the threshold of 0.12, which maximized the
performance improvement per cost, 17.6% of improvement
was achieved from 0.51 to 0.6, which decreased the number
of additional required workers from 306% to 116%.

The SCFilter can be utilized for live filtering that
determines a worker's quality immediately upon finishing a
HIT. In practice, a requester may force a worker to redo
their HIT or reject the worker’s HIT by a preset policy.
Thus, without additional monetary costs, a requester can
improve the quality of the labels. It may also be helpful for
crowdworkers as they do not need to wait until their hit gets
accepted or rejected. The qualification can be presented
immediately to workers right after finishing the job, and
they may get a chance to revise their answers to be
accepted.

REFERENCES
Alonso, O. (2009). Can we get rid of TREC assessors? Using Mechanical

Turk for relevance assessment. Proceedings of the SIGIR 2009
Workshop.

Ambati, V., Vogel, S., & Carbonell, J. (2010). Active learning and crowd-
sourcing for machine translation. LREC, 11(1), 2169-2174.

Brew, A., Greene, D., & Cunningham, P. (2010). Using crowdsourcing
and active learning to track sentiment in online media. ECAI 2010. (p.
145–150). IOS Press.

Eckert, K., Niepert, M., Niemann, C., Buckner, C., Allen, C., &
Stuckenschmidt, H. (2010). Crowdsourcing the assembly of concept
hierarchies. JCDL ’10, 139.

Hsueh, P. Y., Melville, P., & Sindhwani, V. (2009). Data quality from
crowdsourcing: a study of annotation selection criteria. NAACL HLT
2009 (p. 27–35). ACL.

Kazai, G., Kamps, J., Koolen, M., & Milic-Frayling, N. (2011).
Crowdsourcing for Book Search Evaluation: Impact of HIT Design on
Comparative System Ranking. SIGIR 2011, July 24-28, 2011, Beijing,
China. ACM.

Kittur, A., Chi, E., & Suh, B. (n.d.). Crowdsourcing for Usability: Using
Micro-Task Markets for Rapid, Remote, and Low-Cost User
Measurements. Proc. CHI 2008.

Kittur, A., Chi, E. H., & Suh, B. (2008). Crowdsourcing user studies with
Mechanical Turk. CHI ’08, 453. New York, New York, USA: ACM
Press.

Nowak, S., & Rüger, S. (2010). How reliable are annotations via
crowdsourcing. MIR ’10, 557. New York, New York, USA: ACM
Press.

Quinn, A. J., Bederson, B. B., Yeh, T., & Lin, J. (2010). CrowdFlow:
Integrating machine learning with mechanical turk for speed-cost-
quality flexibility. Technical Report HCIL-2010-09, University of
Maryland (2010).

Sebastiani, F. (2002). Machine learning in automated text categorization.
ACM Computing Surveys, 34(1), 1-47.

Snow, R., O Connor, B., Jurafsky, D., & Ng, A. Y. (2008). Cheap and fastʼ
—but is it good?: evaluating non-expert annotations for natural
language tasks. Proceedings of the Conference on Empirical Methods
in Natural Language Processing (p. 254–263). ACL.

This work was partially supported by a grant from the Science and
Technology Foundation of Portugal (FCT) and a John P. Commons
fellowship.

