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ABSTRACT
Crowdsourcing has been recognized as a possible technique 
to  complement  costly  user  studies,  usability  studies, 
relevance  judgment  for  information  retrieval  studies,  and 
training set build-up for automatic document classification. 
However,  the  quality  of  crowdworkers  varies  by  diverse 
factors and we often cannot tell whether their answers are 
right or wrong immediately due to the lack of gold standard 
answers. In this paper, we present a machine-learning based 
crowdworker filtering technique that can be used to assess 
workers immediately after they finish their assigned tasks. 
A  Support  Vector  Machine  (SVM)-based  crowdworker 
filter, called a Smart Crowd Filter (SCFilter), was used to 
predict  the  probability  that  each  label  is  correct  and 
identifies  those  crowdworkers  that  consistently  provide 
answers  that  are  unlikely  to  be  correct.  To  verify  the 
performance  of  the  SCFilter,  a  bad  worker  detection 
simulation  test  and  an  experiment  in  an  actual 
crowdsourcing  environment  at  the  Amazon  Mechanical 
Turk  (AMT)  website  were  performed.  In  the  simulation 
test,  bad  worker  detection  performance  was  assessed  in 
terms of precision and recall. In the experiment at the AMT 
website,  a  statistically  significant  improvement  was 
observed for automatic document classification.
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INTRODUCTION
Recently, crowdsourcing has attracted the attention of the 
information science community as a possible technique to 
complement costly user studies (Kittur, Chi, & Suh, 2008), 
usability  studies,  relevance  judgment  for  information 
retrieval  studies  (Alonso, 2009), and training set build-up 
for  automatic  document  classification  (Brew,  Greene,  & 
Cunningham,  2010;  Kazai,  Kamps,  Koolen,  &  Milic-

Frayling, 2011). However, the biggest trade-off for fast and 
cheap  answers  is  quality  (Hsueh,  Melville,  & Sindhwani, 
2009; Snow, O'Connor, Jurafsky, & Ng, 2008). The quality 
of  crowdworkers’  answers  varies  since  these  kinds  of 
workers  do  not  operate  under  a  controlled  environment. 
Also,  we  do  not  know  the  workers’  socio-economical 
backgrounds,  and  we  often  cannot  tell  whether  their 
answers are right or wrong due to the lack of pre-existing 
gold standard answers. 

To minimize the impact of possible erroneous or abusive 
answers from crowdworkers, answers from “bad” workers 
need to be excluded from the training data. In this paper, we 
present a machine-learning based crowdworker filter, called 
a  Smart  Crowd  Filter  (SCFilter),  which  can  predict  the 
quality of each of the workers by examining each of their 
answers.  The  SCFilter  is  based  on  a  Support  Vector 
Machine  (SVM) which  predicts  the  probabilities  of  each 
answer  for  every  example,  and  finds  the  crowdworkers 
whose  average  probability  of  answers  is  below  a  given 
threshold. 

To verify the performance of the SCFilter, we first analyzed 
the performance  of  bad  worker  detection in  a  simulation 
test.  This  test  used  3068  hand-labeled  examples  of 
Infochimps1 documents  that  included  title,  description, 
source, and user-assigned tags. Good and bad workers were 
generated according to a preset error rate, and the SCFilter 
was used to identify bad workers  based on automatically 
generated answers. After the simulation test, an experiment 
was  performed  on  the  on  Amazon  Mechanical  Turk 
(AMT)2 website to verify the performance of the SCFilter 
in  an  actual  crowdsourcing  environment.  This  AMT 
experiment  was  performed  to  obtain  labels  for  training 
examples in order to predict the labels of 10447 unlabeled 
examples  of  Infochimps  documents.  The  SCFilter  was 
applied to the crowdworkers in the AMT website, and the 
performance  of  SVM-based  automatic  categorization 
trained  on  training  labels  filtered  with  the  SCFilter  was 
compared to the unfiltered baseline.  

RELATED WORK
Most traditional supervised machine learning systems have 
relied on expensive human-labeled training sets produced 

1http://www.infochimps.com
2https://www.mturk.com
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by a small number of experts  (Sebastiani, 2002). To avoid 
expensive  human  labor  to  build  training  examples, 
crowdsourcing  has  been  utilized  in  multiple  machine 
learning studies. For example,  Snow et al.  (2008) assessed 
the  usability  of  AMT  for  natural  language  processing 
problems, mostly for classification. Brew et al. (2010) used 
crowdsourcing  along  with  active  learning  for  sentiment 
classification,  and  Ambati,  Vogel,  &  Carbonell  (2010) 
applied  crowdsourcing  and  machine  learning  to  machine 
translation.  Individual  crowdworkers  are  usually  not 
experts, but the aggregation of the wisdom of the crowd can 
often  provide  labels  of  fair  quality  that  can  partially  or 
entirely replace expensive expert labeling. 

However,  unlike  expert  annotators,  the  quality  of 
crowdworkers’  feedback  is  hard  to  control.  The  most 
widely used way of measuring the quality of crowdworkers’ 
annotation  is  inter-annotator  agreement.  Nowak  & Rüger 
(2010)  analyzed the degree of agreement between workers 
for  the  same example  and  filtered  out  noisy annotations. 
Another  approach  was  used  to  balance  the  load  between 
machine  learning  and  crowdsourcing  to  optimize  the 
machine  learning  performance.  In  addition,  Quinn, 
Bederson,  Yeh,  & Lin (2010) presented  CrowdFlow that 
tunes  the  balance  between  crowdworkers  and  machine 
learning for optimal performance. Other approaches include 
detecting  extremely  short  task  durations,  verbal  answer 
analysis  (Kittur  et  al.,  2008),  and  using  hidden  gold 
standard  questions  (Eckert  et  al.,  2010).  The task design 
also  affects  the  quality  of  crowdsourcing  (Kazai  et  al., 
2011).

SMART CROWD FILTER
A  Smart  Crowd  Filter  (SCFilter)  is  a  machine  learning 
based  model  that  can  be  used  to  detect  a  “bad” 
crowdworker,  who randomly guesses  labels or  constantly 
assigns  wrong  labels.  Given  a  collection  of  N  examples
X 1 : N ,  X 1: N  can be partitioned into a seed set  X 1 : M  

and  a  test  set  X M +1: N .  Trained  on  examples  from the 

seed  set  X 1 : M with  Y 1 : M  corresponding  labels  chosen 

from categories C1 :∣C∣ , the SCFilter can be used to predict 

the normalized probability of  P (c∣x)  for every possible 

label for every example in the test set X M +1: N . 

W  denotes workers, and every worker w∈W  is assigned 
λ  tasks. We defined a task to be a single labeling event in 

which  the  worker  is  presented  with the title,  description, 
and tags of a document with category options and asked to 
categorize  the  document  with  one  of  the  labels.  For 
example,  a  given  worker  w  generates  a  label  ŷ  for  a 

given example  x∈ X 1 :λ .  The SCFilter predicts whether 

the given worker  w is good or not as shown in Figure 1. 
SCF(w,t)  returns  1  ( w  is  a  good  worker) when  the 
average probability of w ’s label ŷ  for x∈X  is above a 

threshold t , otherwise it returns 0  ( w  is a bad worker).

SIMULATION TEST

Test Collection
The test collection consists of a selection of documents of 
obtained  from  the  Infochimps  website.  As  of  April  26, 
2011, there were 13515 document examples containing the 
title,  tags,  description,  and  source  of  documents.  An 
example of an Infochimps document is as follows:

Title: Average Hours Worked Per Day by Employed Persons: 2005

Tags:  America,  persons,  per,  average,  day,  worked,  employed,  hours, 
demographics, government, census, population

Description:  The  Statistical  Abstract  files  are  distributed  by  the  US 
Census Department as Microsoft Excel files. These files have data mixed 
with notes and references, multiple tables per sheet, and, worst of all, the 
table headers are not easily matched to their rows and columns. 

Source: Census Bureau

The  documents  fell  into  thirteen  categories  including 
Science,  Computers,  Engineering,  Medicine,  Economics, 
Social Sciences, Geography, History, Linguistics, Poliltics 
and Law, Art and Culture, Encyclopedic, and Sports. 

Among  these  document  examples,  3068  (22.7%)  were 
previously hand-labeled. 2068 examples were used as seeds 
for  initial  SVM  training,  and  the  other  1000  document 
examples were used for testing.

Experimental Design
The  SVM  was  implemented  with  LIBSVM3 for  Ruby4. 
After testing different models by cross-validation, the linear 
model was chosen. Let Z1 :∣W∣∈{1,0 }  denote the quality 

of workers such that  Z i=1  if and only if  w i  is a good 

worker.  In  the  simulation  test,  a  good  worker  Z i  was 

generated by a Bernoulli distribution ( B ) with probability 
0.8, and labels for a good worker were also generated by a 
Bernoulli  distribution with probability 0.8.  A bad worker 
was assumed to follow a simple random model that chooses 
a label  c∈C  uniformly at  random.  All other  notations 
followed  the  definitions  in  the  section  “Smart  Crowd 
Filter.”  We  simulated  crowd  labeling  for  the  1000  test 

3http://www.csie.ntu.edu.tw/~cjlin/libsvm/
4https://github.com/tomz/libsvm-ruby-swig

function  SCF( w , t ):

    return{1,   if 
1
λ ∑

j=1:λ

P ( ŷ j∣x j)>t ( x∈X 1:λassigned to w)

0,   otherwise

 

Figure 1. The function that was used to detect a bad 
worker.



examples  X M +1: N   by  generating  labels  ŷ M+1 : N  as 

shown in Figure 2. We set λ=5 , and thus ∣W∣=200 .

Results
Figure  3  shows  the  simulated  bad  worker  detection 
performance  of  the SCFilter  in  terms of  precision,  recall 
and  F-score.  Precision,  recall,  and  F-score  in  this 
experiment were defined as follows:

Precision=
Numberof CorrectlyClassified Bad Workers

Workers Classified as Bad Workers

Recall= Number of Correctly Classified Bad Workers
Number of All Bad Workers

F−score=
2PR

P+R

When  the  precision  was  higher,  the  SCFilter  filtered  out 
less bad workers and sacrificed fewer good workers. When 
the recall  was high,  SCFilter  detected  more bad workers 
and sacrificed more good workers. The F-score refers to the 
harmonic  mean of  precision  and  recall.  The result  is  the 
average of five trials, and the SCFilter performed the best at 
the threshold of 0.1 in terms of the F-score, which was 1.25 

of the random selection probability (
1

13
=0.08 ). To filter 

out all the bad workers (100% Precision = 37% Recall), we 
had to sacrifice an average of 73% of the good workers at 
the  threshold  of  0.28.  However,  a  high F-score  may not 
guarantee  the  best  performance improvement  in  terms of 
document  classification.  The  next  experiment  with  the 
AMT tests  was  done to  determine the best  threshold for 
using the SCFilter for actual document classification.

PERFORMANCE TEST ON AMT

Test Collection
Some of the 10447 unlabeled Infochimps documents were 
used in the AMT performance test. 250 examples were used 
for the seed set to train the SCFilter, and 500 were used for 
the training set. In sum, the SVM classifier was trained on 
750 crowdsourced examples.

To evaluate  the  performance  of  the  SVM classifier,  300 
gold standard examples were randomly sampled from the 
remaining examples and each example was labeled by ten 
or more AMT crowdworkers. Among the 300 gold standard 
examples,  82  examples  were  excluded  from  the  gold 
standard  documents,  since  fewer  than  30%  of  the 
crowdworkers agreed on a single majority category.

Experimental Design
To  verify  the  performance  of  the  SCFilter  in  an  actual 
crowdsourcing  environment,  the  crowdsourcing  test  was 
performed at the AMT website. To initialize the SCFilter, 
250 examples were crowdsourced by 50 workers,  and the 
performance  of  the  SVM  classifier  with  the  filter  was 
compared to the gold standard examples. An AMT worker 
labeled λ=5  randomly chosen examples. If the SCFilter 
with a threshold predicted that a worker was a bad worker, 
the  worker’s  answers  were  ignored.  This  process  was 
repeated  until  the  number  of  valid  workers  reached  100. 
Trained on the answers of 100 workers, the SVM classifier 
was  then  used  to  predict  the  categories  of  the  test  set 
examples.  The  predictions  of  the  SVM  classifier  were 
compared  to  the  gold  standard  examples  in  order  to 
measure the performance of the classifier. This process was 
done for six different thresholds including the baseline. The 
algorithm for this process is presented in Figure 4. In Figure 

1:  for each w i∈W  do

2:     sample Z i∼B(.8)

3:     for each x j∈ X (i−1)λ+1 :i λ  do

4:         Generate γ∼B(.8)
5:         if Z i=1  and γ=1  then 

6:             generate ŷ j= y j

7:         else

8:             generate ŷ j=c∈C∼P (c)
9:         end if
10:     end for
11: end for

Figure 2. Algorithm for generating simulated 
crowdworkers and labels.

1:  W =∅
2:  while ∣W∣  < 100 do

3:     for each x j∈ X (i−1)λ+1 :i λ  do

4:         Let w∈W AMT  label x j  with ŷ j∈C
5:     end for
6:     if SCF (w , t)  = 1 then

7:         W ={W ,w }
8:     end if
9:  end while

Figure 4.Algorithm for a performance test on the AMT 
website.

Figure 3. Simulated bad worker classification 
performance of the SCFilter .



4, W  is a set of accepted workers, and W AMT  is the pool 
of the AMT workers.

HIT (Human Intelligence Tasks) refer to a batch of tasks 
presented to crowd workers at the AMT website. One HIT 
includes 5 tasks.  In each task, the title,  tags,  description, 
and thirteen categories to choose from are shown to a crowd 
worker. Every worker is paid $0.05 per HIT and the time is 
limited  to  8  minutes.  With  this  HIT  design,  it  takes  23 
seconds in average to finish one given task. When the time 
limit was higher, fewer workers were attracted and it took 
more time to get the desired number of labels. It  takes 1 
minute and 55 seconds on average to finish 1 HIT.

Results
In  the  AMT  performance  test,  the  filtered  training  set 
significantly  outperformed  the  unfiltered  baseline  at  the 
expense  of  hiring  more  crowdworkers.  Crowdsourcing 
answers filtered with a threshold greater than 0.11 showed 
statistically  significant  performance  improvements  at 
p<0.01.  The  best  trials  at  the  thresholds  0.13  and  0.14 
showed a 19.6% improvement from 0.51 to 0.61 in terms of 
the F-score. 

Table 1 shows the number of filtered out crowdworkers and 
the classification performance per threshold. To achieve the 
best performance at the threshold of 0.14, 306 workers were 
filtered out. This presents a cost of about four times more 
money  than  when  using  the  unfiltered  baseline.  The 
threshold  of  0.13  achieved  the  same  performance  by 
filtering out 207 workers, and the threshold of 0.11 yielded 
a slightly lower performance (0.6 compared to 0.61) but it 
filtered out only 116 workers which is 38% of that of the 
threshold of 0.14. However, in practice,  the requester may 
sometimes refuse  to  pay the filtered out  workers  as  they 
would not be considered qualified workers.

Threshold 0 0.1 0.11 0.12 0.13 0.14

Additional workers 0 69 116 130 207 306

Precision 0.52 0.54 **0.61 **0.61 **0.62 **0.62

Recall 0.5 0.52 **0.59 **0.59 **0.6 **0.6

F-Score 0.51 0.53 **0.6 **0.6 **0.61 **0.61

Table 1. The performance test of the SCFilter when 
tested in on the AMT website.

CONCLUSION
This  paper  presents  a  SCFilter  that  sorts  out  bad 
crowdsourcing  workers.  In  a  simulation  test  on  a  hand-
labeled  document  collection,  the  SCFilter  filtered  out 
70.8% of the bad workers while sacrificing an average of 
about 9% of the good workers. In an actual crowdsourcing 
environment,  the  SCFilter  significantly  improved  the 
automatic classification performance by 19.6% (with a 0.51 

to  0.61  F-score  improvement)  at  the  threshold  of  0.14, 
which required about 306% more crowdworkers. In optimal 
settings  at  the  threshold  of  0.12,  which  maximized  the 
performance improvement per cost, 17.6% of improvement 
was achieved from 0.51 to 0.6, which decreased the number 
of additional required workers from 306% to 116%.

The  SCFilter  can  be  utilized  for  live  filtering  that 
determines a worker's quality immediately upon finishing a 
HIT. In practice,  a requester  may force a worker to redo 
their  HIT or  reject  the  worker’s  HIT by a preset  policy. 
Thus,  without  additional  monetary  costs,  a  requester  can 
improve the quality of the labels. It may also be helpful for 
crowdworkers as they do not need to wait until their hit gets 
accepted  or  rejected.  The  qualification  can  be  presented 
immediately to  workers  right  after  finishing the  job,  and 
they  may  get  a  chance  to  revise  their  answers  to  be 
accepted. 
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