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ABSTRACT

This paper presents a novel metadata extraction (MDE) sys-
tem for automatically detecting edited words, fillers, and
self-interruption points in conversational speech. Our edit
word detection sub-system combines a Tree Adjoining Gram-
mar (TAG) noisy channel model, a statistical syntactic lan-
guage model, and a MaxEnt reranker. Hand-built, determin-
istic rules are used to detect fillers. Self-interruption points
are explicitly determined by detected fillers and edited words.
We have evaluated our system for these three tasks on two
types of input: manually annotated words and automatically
recognized speech-to-text tokens. In all six cases, our sys-
tem has improved the state-of-the-art, as measured in a re-
cent blind evaluation.

1. INTRODUCTION

In previous work [1, 2], we presented a noisy channel model
for detecting speech repairs, and showed that this performs
better than a simple word-by-word classifier approach. This
paper extends these methods to three specific metadata ex-
traction (MDE) tasks:

Edit Word Detection (EWD): on a word-by-word basis, dis-
criminate between those words which are and are not
part of the reparandum region of a speech repair

Filler Word Detection (FWD): on a word-by-word basis,
discriminate between those words which are and are
not part of a filler phrase (e.g. “um”, “you know”, “so
anyway”, etc.). Furthmore, the type of filler must also
be specified: Filled Pause (FP), Discourse Marker
(DM), or Explicit Editing Term (EET). FPs are words
such as “um”, “ah”, “eh”, etc. DMs signal the speaker’s
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intent to mark a boundary in discourse, and EETs
consist of an overt statement from the speaker rec-
ognizing the existence of a disfluency [3]

Interruption Point Detection (IPD): for each inter-word
gap, predict whether speech becomes disfluent at that
point (the previous word ended a reparandum or the
next word begins a filler).

In all cases, our goal is to recover metadata annotations con-
sistent with those specified by LDC [3].

Our overall system architecture for performing these tasks
is sketched in Figure 1. The noisy channel model we pro-
posed previously [1] formed the basis of the system pre-
sented here. As explained in section 2, that model produces
25 different sentence-level hypotheses about the locations
of edited words for each sentence it analyzes and scored
each analysis using a parsing based language model, as de-
scribed in section 3. The system takes transcript words seg-
mented into sentences as input. Whereas the earlier noisy
channel model simply returns the most probable sentence-
level hypothesis, the system described here uses a MaxEnt
classifier to rerank these hypotheses and select the highest
scoring one [4]. As explained in section 4, an advantage of
MaxEnt reranking is that it permits us to use a wide range
of additional information to identify the best sentence-level
analysis.

Our base system, as described previously [1], detects
the components of speech repairs as identified by Shriberg
[5], i.e., it identifies a reparandum, an interregnum (possi-
bly empty) and a repair substring for each speech repair.
This means that we can use it to detect edited words, but it
does not supply enough information for detecting fillers or
self-interruption points (IPs). With regard to IPs, our base
system only predicts IPs following edits, not those which
precede fillers. We have therefore augmented our base sys-
tem with a set of hand-written deterministic rules for the
FWD task (see section 5), and the output of our EWD and
FWD sub-systems explictly determines detected IPs.

In section 7, we present experimental results of our sys-
tem as measured in the recent Fall 2004 Rich Text (RT-04F)
MDE blind evaluation [6]. As part of this evaluation, sys-



tem performance was assessed on both manually annotated
words and automatically recognized speech-to-text tokens.
Our system was the the top performer in all six cases.

2. THE TAG CHANNEL MODEL

We have described the TAG channel model is detail previ-
ously [1], so we only summarize it here. Following Shriberg’s
analysis of speech repairs [5] the channel model analyzes
speech repairs in terms of the reparandum, interregnum and
repair components, as depicted in Figure 2. Only the de-
tected reparandum and interregnum are annotated in its out-
put, since later processing does not depend on the repair
words. Specifically, it tags every word in its input string
with one of the following tags:

E] final word in reparandum,

E nonfinal word in reparandum,

I] final word in interregnum,

I nonfinal word in interregnum, and

word not in reparandum or interregnum.

Thus a single analysis produced by the channel model might
be something like:

a _ flight _ to E Boston E] uh I uh I]
to _ Denver _

The chief difficulty in detecting such structures is that they
involve crossing dependencies, which lie outside of the ex-
pressive power of finite state and context-free grammars.
However, crossing dependencies of this kind can be gen-
erated by Tree Adjoining Grammars (TAGs). Unlike most
TAGs, which are used to describe head-complement and
other linguistically important dependencies, the TAGs used
here capture the “rough copy” relationship between the reparan-
dum and repair strings. In our system, conventional linguis-
tic dependencies are captured by the syntactic parser based
language model described in section 3.

Informally, the TAG transducer in the channel model
is responsible for generating the words in the reparandum
and the interregnum of a speech repair from correspond-
ing repair. The channel model non-deterministically pre-
dicts repairs at every position in the input string, condi-
tioned on the preceding word. Because it is conditioned on
the preceding word, it captures the well-known effect that
repairs are more likely to occur at the beginning of a sen-
tence than elsewhere. The interregnum is generated by a
simple unigram model over words or pairs of words such
as I mean, etc. Each reparandum word is generated condi-
tioned on the word preceding the reparandum and the repair

string that corresponds to the reparandum. The TAG trans-
ducer is effectively a simple first-order Markov model (al-
beit one that captures string non-local dependencies) gener-
ating each word in the reparandum conditioned on the pre-
ceding word in the reparandum and the corresponding word
in the repair.

In our noisy channel model, the probability of a sentence-
level analysis is the product of TAG channel model (which
generates the reparandum and interregnum) and the parser-
based language model (which generates the words that are
not in either a reparandum or interregnum). Ideally, we
would like to find the strings with highest probability ac-
cording to this product model. Unfortunately, we don’t know
an efficient dynamic programming algorithm for searching
for these strings, and there may not be one, since the in-
tersection of a TAG (the channel model) and a CFG (the
parser-based language model) is in general undecidable.

Instead, we search for the highest scoring analyses us-
ing a bigram language model. (Recall that the intersection
of a TAG with a FSM is another tree-adjoining language).
Specifically, we search for the 25 highest-scoring sentence
level analyses using the TAG channel model and a simple
bigram language model. The MaxEnt reranker described in
section 4 will select one of these as our system’s preferred
analysis, using the parser-based language model probability
in place of the bigram language model probability.

The TAG transducer is trained on the disfluency files in
sections 2 and 3 of the version of Switchboard distributed
in the Penn Treebank 3 CDROM. This is because the trans-
ducer must be trained on data that includes explicitly marked
repair strings for each speech repair.

3. THE SYNTACTIC LANGUAGE MODEL

The syntactic language model used here is that described
in [2]. It is, in essence, simply a generative probabilistic
syntactic parser that when used for parsing searches for the
parse that maximizes

arg maxπp(π | s) = arg maxπp(π, s) (1)

where π is a parse tree and s is a sequence of words (a sen-
tence). When used for language modeling we rather attempt
to evaluate ∑

π

p(π, s) = p(s). (2)

This latter, of course, is simply the required language model.
Also, as noted in the aforementioned paper, the lan-

guage model version of the parser differs from the parsing
version in it incorporates tri-head probabilities (i.e., each
head word is conditioned not just on its governor, but on its
governor’s governor). It is generally recognized that condi-
tioning parsing rules and head selection rules on the gover-
nor (i.e., the head of the parent constituent) results in higher



25 best edit hypotheses

Parser-based language model

Parses and string probabilities for each edit hypothesis

MaxEnt reranker

Best edit hypothesis

Deterministic FW and IP rule application

EW, FW and IP labels for input words

(TAG channel model with bigram LM)
Noisy channel model

Input words segmented into SUs

Deterministic SU segmentation algorithm

Input words and IP probs from SRI, ICSI and UW

Fig. 1. The general architecture of our MDE system. Roman script identifies processing steps, while italic script identifies
data. The noisy channel model is described in Johnson and Charniak [1], and the parsing language model is described in [7].
The other components are described in this paper.

. . . a flight to Boston,

︸ ︷︷ ︸

Reparandum

uh, I mean,

︸ ︷︷ ︸

Interregnum

to Denver

︸ ︷︷ ︸

Repair

on Friday . . .

Fig. 2. The structure of a typical repair, with crossing dependencies between reparandum and repair, following Shriberg [5].



parse accuracy. As one may infer from the (lack of) litera-
ture on the topic, conditioning on the governor’s governor
has no beneficial impact on parsing accuracy (this is what
we find). However, this is not the case for language model-
ing. Conditioning head selection on the governor’s governor
results in a major improvement on perplexity results. This,
of course, should not be surprising, since this is the pars-
ing analogue of moving from a bigram language model to a
trigram model.

Finally the language model was trained on the tree-banked
section of Switchboard included with the Penn Treebank 3
CDROM, along with small sections of less formal text from
the Brown Corpus. (Experiments in using Wall Street Jour-
nal text resulted in no improvement on switchboard devel-
opment data, presumably due to the very different makeup
of the corpora.)

4. THE MAXENT RERANKER

The MaxEnt reranker is responsible for choosing the best
Edit Word hypothesis from the list of the 25 best analyses
for each SU generated by the TAG channel model. The pri-
mary reason why we used a MaxEnt reranker is that it per-
mits us to tune our model to RT-04F training data (recall
that the TAG channel model and the syntactic parser lan-
guage model are in fact trained on the Switchboard data dis-
tributed with the Penn Treebank 3 CDROM). But it also has
the added advantage that it permits us to experiment with
a wide variety of other features, including features derived
from the string and parse tree and features derived from
other sources, such as the syntactic context of repairs and
prosodic information associated with IPs.

The log probabilities produced by the TAG channel model
and the syntactic parser language model are the primary fea-
tures used by the reranker; if these were the only features,
the MaxEnt reranker would essentially implement the stan-
dard noisy channel model with adjustable mixing constants
for the channel and language models. An advantage of the
MaxEnt reranker is that it can incorporate a wide range of
different features. In the system described here we added a
variety of features based on the local context of the reparan-
dum based on the features we used in an earlier word-by-
word Edit Word Detection (EWD) detection system [2]. An
informal error analysis of the two EWD algorithms in [2]
and [1] suggested that the noisy channel model was better
at detecting moderately long speech repairs, but the word-
by-word classifier was better at detecting extremely short
repairs, so we used many of the features from [2] as fea-
tures for our MaxEnt model.

We also added two additional types of features. First,
since we have syntactic parses of the whole SU, we can
identify the syntactic context in which each speech repair
occurs, so we experimented with adding features based on

the syntactic context here. The features we used were the
category labels immediately dominating, preceding and fol-
lowing the repair.

Secondly, we have conducted preliminary experiments
using features based on prosodic information, specifically
word-by-word IP probabilities provided to us by SRI-ICSI-
UW. While we have not conducted a systematic investiga-
tion, we found that the most straight-forward way of incor-
porating these—taking the log probabilities as features—
was not successful, so instead we binned the probability
values and used each distinct bin as a categorical variable
(the feature fires once whenever any word’s IP probability
falls into the bin). Our suspicion is that the binning helps
deal with nonlinearities in the probability estimates of the
models involved (i.e., one or both of the log probability dis-
tributions estimated by the noisy channel model or by the
IP model is nonlinearly related to the true log probability
distribution, and this nonlinearity cannot be corrected by a
simple scaling constant of the kind that MaxEnt estimates).

5. THE DETERMINISTIC RULES

Our basic system does not return sufficient information to
perform the FWD or IPD tasks. We have therefore aug-
mented our base system with a set of hand-written deter-
ministic rules for the FWD task, based on analysis of the
Dev1 and Dev2 corpora (see section 6), as well as an ear-
lier analysis of the distribution of disfluencies in speech [8].
IPD predictions were derived from EWD and FWD output.

5.1. Filler Word Detection (FWD)

Filler words are identified and classified into filler types us-
ing a small collection of deterministic rules. These rules
were constructed as follows. First, we noticed that filler
words are approximately distributed in the training data (by
token) as follows: 70% Discourse Marker (DM), 30% Filled
Pause (FP), < 1% Explicit Editing Term (EET). Based on
this, we decided to ignore EET fillers completely, so our
system never predicts a word as EET. We then examined
the distribution of FPs and noted that > 95% of the distri-
bution is composed of the four words “uh”, “um”, “eh”, and
“ah”. Moreover, we noted that these four words occur al-
most exclusively as FPs (> 95% of the time). As a result,
we simply label any occurrence of one of these words as a
FP, and never predict any other word as a FP. As for DMs,
we noted that 2 two-word phrases (“you know”, “i mean”)
and 6 other words (“like”, “so”, “well”, “oh”, “actually”,
“now”) comprise 95% of the DMs, so we only label these
words as DMs.

This still leaves the question of how we decide whether
these phrases are in fact FPs. Our first approach was simple:
classify all occurrences of each term according to whichever



classification was most frequent for the given term. That
is, “you know”, “i mean”, “like”, “so”, and “well” were
always labeled DM and no other phrases were labeled DM;
this simple approach yields about 30% overall error on the
FWD task (on the development corpora). We made a series
of small improvements to these basic rules as follows.

First, we label “oh” a DM whenever it was the first
word of a sentence and the sentence length was less than or
equal to 4. We also label “like” a non-DM if it is preceded
by “seem”, “’m”, “feel”, “i”, “n’t”, “something”, “stuff”,
“sound”, “things”, “was”, “would”, “you”, “’s” or “’re”, or
followed by “that” or “to”. With these two modifications,
the deterministic FWD rules have about 22% error.

In addition, we introduced rules sensitive to part-of-speech
(POS) labels, as defined by Penn Treebank annotation guide-
lines [9] and identified by the Charniak parser, into the rules.
Specifically, “so” is not labeled DM if it is followed by POS
type “IN” or preceded by “AUX” or “RB”, or if the two
preceding tokens were both “CC”. Further, “like” is not la-
beled DM if it is followed by POS types “VBP” or “VB”
or preceded by types “VBZ”, “NN”, or “NNS”. With this
modification, the deterministic FWD rules have an overall
error rate of about 20%.

Finally, we introduced rules that are sensitive to the string’s
parse tree. Specifically, “so” is not labeled DM if it is part
of an adjectival or adverbial phrase, and “actually” is only
labeled DM if it is part of an “UH” phrase or it is uppercase.
With these modifications the deterministic FWD rules have
an error rate of about 19%. These rules were the ones used
to produce the output we submitted for the RT-04F evalua-
tion.

Note that we did not make use of the interregna iden-
tified by our EWD system. Interregna account for a small
portion of the overall filler phrases, and nearly all of these
are correctly identified by the deterministic rules above. Thus
even correctly identified interregna would provide negligi-
ble improvement to our FWD system.

5.2. Interruption Point Detection (IPD)

Our IP detection is based on the literal definition of Inter-
ruption Points: an IP follows each reparandum and precedes
each filler phrase [3]. Since our EWD system identifies the
end of each reparandum and our FWD system to identifies
the start of each filler phrase, we labeled IPs accordingly.

6. INPUT DATA

The following corpora were provided to us as part of the RT-
04F MDE evaluation for Conversational Telephone Speech
(CTS) [6]:

Dev1 RT-04 MDE DevTest Set #1 V1.2 (LDC2004E16):
72 CTS files (6 hours) drawn from Switchboard (ISIP)

and Fisher (http://www.ldc.upenn.edu/Fisher/).

Dev2 RT-04 MDE DevTest Set #2 V1.1 (LDC2004E29):
36 CTS files (3 hours) drawn from Fisher

Evaluation The final evaluation test set was provided di-
rectly by NIST: 36 CTS files (3 hours) drawn from
Fisher

Training RT-04 MDE Training Data V1.2 (LDC2004E31):
396 CTS files (40 hours) drawn from Switchboard
(ISIP).

This data was generated by LDC and provided in RTTM for-
mat [6]. Reference lexemes included case information and
partial words (RTTM LEXEME sub-type “frag”). While
the RTTM format also distinguishes lexeme sub-types fur-
ther (e.g. proper nouns, acronyms, etc.), we did not make
use of this information. Similarly, we did not we utilize
any non-lexical information contained in the RTTM format
(e.g. event onset and duration times), nor did we use the
audio data LDC provided.

The MaxEnt reranker was trained on the Dev1 and Dev2
data sets. We did not use the Training data above because it
is not parsed, nor does it have the precise form of disfluency
annotations that our base system trains from, although as we
explain below, it should be possible to train both the parser
and channel model from this data, and we hope to do so in
future work.

In addition to these corpora, we used the parsed and
disfluency annotated Switchboard data distributed on the
Penn Treebank 3 CDROM. As described in the previous
sections, the parsed data was used to train the parsing lan-
guage model, and the Treebank 3 disfluency annotations
were used to train the channel model. For testing on au-
tomatically recognized STT tokens, partial words and case
were stripped out prior to training, but both were left in for
testing on manually annotated words.

We were also provided with the following additional
data generated by SRI-ICSI-UW [10]: automatically rec-
ognized (STT) words, the probability of each lexeme (refer-
ence and detected) being immediately followed by an inter-
ruption point (IP), and the probability of each lexeme (both
reference and detected) ending a sentence-like unit (SU).
Recognized lexemes did not include case information or
partial words. The IP/SU probabilities were generated us-
ing an ensemble of methods. A probabilistic prosody model
estimates the conditional probability of an IP/SU event via a
decision tree using prosodic features such as duration, fun-
damental frequency (F0), energy, and pause.

7. RESULTS

In this section we report the performance of our system on
the EWD, FWD, and IPD metadata extraction (MDE) tasks



Task STT Ref
EWD 76.25% 46.08%
FWD 39.93% 23.69%
IPD 55.88% 28.60%

Table 1. Error rates of our MDE system on the RT-04F
Evaluation data.

Features STT Ref
all features 75.8% 52.8%
all but IP features 76.4% 54.3%
all but parser LM features 76.7% 55.0%
all but TAG channel features 81.0% 56.5%

Table 2. EWD error rate on the Dev2 data as a function of
features used by the MaxEnt reranker.

for conversation telephone speech. For each task, we tested
our system on both manually transcribed (Reference) lex-
emes and automatically recognized Speech-To-Text (STT)
lexemes on the Evaluation data. Performance on all tasks
was measured using the following simple error metric: the
number of mistakes (false positives + false negatives) di-
vided by the actual number of events (true positives).

Official results from the RT-04F blind evaluation are
given in Table 1.

To better understand the relative importance of the vari-
ous components of our EWD system, we performed several
contrastive tests in which different subsets of features were
omitted from the MaxEnt reranker. The reranker was run
with:

1. all features included,

2. all features included except IP features,

3. all features included except Syntactic Language Model
probabilities, and

4. all features included except the TAG Channel Model
probabilities.

In these tests the reranker was trained on the Dev1 data and
evaluated on the Dev2 data, preserving the Evaluation data
as a final test corpus for later work. The results of these tests
are given in Table 2.1

Since our EWD system depends heavily on input de-
tected SU boundaries, we were also interested in examining
the effect of SU detection error on our EWD error rate. To

1Note that the MaxEnt reranker’s features in our system were chosen to
complement the parser based language model and the TAG channel model,
and were not changed during these tests. It may be able to improve per-
formance of a system without these components by using other kinds of
MaxEnt features.

measure this, we evaluated our EWD system on the Dev2
data using reference SU boundaries. Using reference SU
boundaries our system has a 44.3% EWD error rate, which
is a 16% error rate reduction compared to the 52.8% EWD
error rate our system obtains using automatically detected
SU boundaries.

8. CONCLUSION AND FUTURE WORK

The noisy channel model of speech repairs we proposed
previously [1] was extended with a maximum entropy reranker
and applied to the task of Edit Word Detection (EWD). We
also augmented this system with a set of manually con-
structed deterministic rules for Filler Word Detection (FWD),
and the combination of our EWD and FWD sub-systems
enabled us to also predict self-interruption points (IPs). We
evaluated our system for these three tasks on two types of
input: manually annotated words and automatically recog-
nized speech-to-text tokens. In all six cases, our system im-
proves the state-of-the-art as measured on the recent RT-04F
evaluation. Perhaps the most encouraging result of this eval-
uation was that the resulting system was highly competi-
tive on speech recognizer output as well as human-produced
transcripts. That it would work well on speech recognizer
output was not a given, as the system uses a parser-based
syntactic language model which might have been thrown off
by incorrectly recognized words anywhere in the sentence.

We envision significant future work that we hope will
result in improved system performance. Roughly speaking
this work falls into two groups: first, work on better fitting
the system to the RT-04F tasks that we were not able to ac-
complish (owing to our late decision to enter the RT-04F
competition) and second, true future research. We discuss
these in turn.

8.1. Future Task Adaptation

In many cases the data used for training our models was
mismatched to the task. To take the most blatant example,
both the channel model and language model were trained
on Penn Treebank 3 version of Switchboard, as opposed
to the more recent Training corpus. Since the Treebank 3
Switchboard transcription conventions, sentence segmenta-
tions and repair annotations differ from those used in the
RT-04F corpora, training from RT-04F corpora should de-
crease the error rate of our system.

We would like to incorporate the Filler Word Detection
task into the noisy channel model. Based on previous re-
search [8] we believe that filler words make parsing slightly
more difficult (at least in terms of parsing accuracy). Thus
having the channel model remove filler words before the
syntactic language model is used to parse the remaining
words would seem to make sense.



In the system used here, our MaxEnt model was trained
on a comparatively small amount of data (the Dev1 and
Dev2 data sets). This effectively makes it impossible to use
infrequently occurring features, such as lexicalized features,
since there simply isn’t enough training data to accurately
estimate the weights in the MaxEnt model for such features.
The much larger Training corpus is an obvious thing to use.

Of course, the MaxEnt training data must be processed
by the TAG channel model and each of the 25-best analyses
for each string must be parsed by the parser-based language
model. (Moreover, if this training data is to be used to train
other components of the system, this must be done in an
n-fold training setting [4]). This may require parsing sev-
eral millions of sentences, which is only practical using a
compute cluster.

8.2. Future Research

Given the encouraging results of applying our model to the
RT-04F tasks we competed in, we look forward to extending
it to other, related, problems.

Perhaps the most immediately obvious is the SU bound-
ary detection problem, the only one of RT-04F MDE tasks
in which we did not participate. We expect that the string-
nonlocal dependencies that our parser-based language model
is sensitive to should be of use in determining where sen-
tences begin and end. As noted above, we found that using
transcript SU boundaries reduces our system’s EWD error
rate, so improved SU detection should synergistically re-
duce EWD error rate as well.

We would also like to work directly off the word lattices
produced by speech recognition systems. Keith Hall has
shown that parser-based language models can work directly
with speech recognizer lattices [11], and it may be possible
to develop a version of our EWD system that does this too.

Finally we would like to explore the use of partially la-
beled, and unlabeled, training data for these tasks. In par-
ticular, there is a common misperception that syntactic lan-
guage models require hand parsed data for training, thus
limiting how much data can be used in their creation. This
is not the case. While it is true that unparsed data does not
seem to help parsing accuracy, we have noticed that addi-
tional unparsed training data does improve both the per-
plexity and word-error rates of our parser-based language
model. We intend to investigate this and other uses of unla-
beled data to improve our results.
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