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ABSTRACT
To create a new IR test collection at low cost, it is valuable to care-
fully select which documents merit human relevance judgments.
Shared task campaigns such as NIST TREC pool document rankings
from many participating systems (and often interactive runs as well)
in order to identify the most likely relevant documents for human
judging. However, if one’s primary goal is merely to build a test
collection, it would be useful to be able to do so without needing
to run an entire shared task. Toward this end, we investigate mul-
tiple active learning strategies which, without reliance on system
rankings: 1) select which documents human assessors should judge;
and 2) automatically classify the relevance of additional unjudged
documents. To assess our approach, we report experiments on five
TREC collections with varying scarcity of relevant documents. We
report labeling accuracy achieved, as well as rank correlation when
evaluating participant systems based upon these labels vs. full pool
judgments. Results show the effectiveness of our approach, and we
further analyze how varying relevance scarcity across collections
impacts our findings. To support reproducibility and follow-on work,
we have shared our code online1.
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1 INTRODUCTION
Test collections provide the foundation for Cranfield-based evalu-
ation of information retrieval (IR) systems [25]. Unfortunately, it
has become increasingly expensive to manually judge so many doc-
uments as collection sizes have grown. On the other hand, failing
to collect sufficient relevance judgments can compromise evalua-
tion reliability. Even commercial search engines, despite their query
logs, still rely on large teams of human assessors [13]. Consequently,
there is great interest in developing more scalable yet reliable IR
evaluation methodology.

To create a new IR test collection at minimal cost, it is valuable
to identify a minimal set of documents for human relevance judging.
This is typically accomplished by running a shared task campaign,
such as NIST TREC, then pooling search results from many par-
ticipating systems (and often interactive runs) to identify the most
likely relevant documents for judging [11]. While this approach is
now canonized in IR practice, organizing the community to run a
shared task is complicated, slow, and requires many hours of work
by organizers and participants. This hidden, real-world cost may
far exceed simple judging costs, which are often the only measure
of cost reported. This suggests a more complete accounting of cost
ought to be considered, if not quantified, wrt. building IR test col-
lections. Shared tasks have many other benefits, but if one’s primary
goal is merely to build a new test collection, it would be useful if
this could be achieved without needing to run a shared task [26].

In this paper, we investigate the following research question: how
feasible is it to build a new test collection without a shared task, and
how can one best accomplish this? To this end, we explore active
learning (AL) [27] methods to support test collection construction
without reliance on shared task document rankings. Rather than
develop novel active learning algorithms, our focus in this work
is the novel combination of active learning methods and inferred
assessments for building test collections without running a shared
task. To the best of our knowledge, this has not previously been
pursued in the literature.

Our approach involves learning a topic-specific document clas-
sification model for each search topic. We consider two distinct
applications of AL. Firstly, we apply AL to select which documents
assessors should judge, and we explore two document selection
strategies [7]: continuous active learning (CAL) and simple active
learning (SAL). Secondly, we consider use of AL to automatically
classify relevance of additional unjudged documents. This differs
from traditional IR evaluation, which often ignores unjudged doc-
uments or assumes them to be non-relevant. Moreover, the ability
to use any hybrid combination of human and automatic judgments
in evaluation provides a flexible tradeoff space for balancing cost
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vs. accuracy [21]. Though others have pursued automatic or semi-
automatic relevance labeling [1, 2, 10, 14, 15, 29], prior studies
do not use AL for i) selecting documents for annotations and ii)
inferring relevance labels for unjudged documents simultaneously
in constructing IR test collections.

Because AL is supervised, an initial seed set of labeled documents
is needed to bootstrap learning. We consider two distinct scenarios
for how these seed judgments might be obtained: interactive search
(IS) and Rank-based Document Selection (RDS). We emphasize that
these represent alternative scenarios rather than competing methods.
IS assumes topic assessors utilize an IS system during a careful topic
creation process, as traditionally practiced in TREC. This produces
seed judgments as a free by-product. RDS, on the other hand, as-
sumes a scenario like the TREC Million Query Track [4] in which
topic formation is extremely brief and assessors are not provided
an IS system in which to explore the collection. In this scenario, an
off-the-shelf IR system is used instead to produce a single document
ranking; assessors then judge documents in this rank-order until
enough seed judgments have been collected to kickstart AL.

In exploring our central research question, contributions of our
work are as follows: 1) We show that it is feasible to develop IR test
collections without needing to organize and run a shared task (i.e.,
just to identify potentially relevant documents for judging); 2) We
demonstrate how AL can be effectively applied to test collection
construction via: i) document selection for collecting human rele-
vance judgments; and ii) automatic labeling of additional unjudged
documents; and 3) We investigate three document selection methods
and two seed data scenarios across five TREC tracks. For one doc-
ument collection (TREC TIPSTER disks 4-5), we present the first
work we know of going beyond the pool to automatically judge the
rest of the document collection.

2 RELATED WORK
Ever-larger document collections challenge systems-based Cranfield
[6] evaluation of IR systems due to needing to collect so many
relevance judgments. While many methods now exist to intelligently
select which documents to judge, these methods typically assume a
shared task context (e.g., TREC) in which document rankings from
many participating systems are available. In contrast, we want to
be able to construct a new test collection without needing to run a
shared task [26, 28].

Büttcher et al. [1] propose labeling unjudged documents using
a classifier trained on a subset of pool documents. This subset of
pool documents is developed by considering documents ranked by a
subset of the submitted rank systems. The trained classifier is then
used to predict relevance labels of documents which are ranked by
the remaining set of rank systems in the shared task. We both report
results for the same 2006 Terabyte Track run, but our results are
not directly comparable to theirs because they assume a traditional
machine learning setup, whereas we motivate and adopt the finite-
pool evaluation setting proposed in [7]. However, we effectively
reproduce their method as a baseline, using logistic regression and
random document selection. We show strong improvement over this
baseline.

While Hui and Berberich [15] use document rankings informa-
tion in their own proposed method, they also reproduce Büttcher

et al. [1]’s SVM method as a baseline, reporting results on the same
WebTrack 2013 and 2014 collections we use in this study. However,
as with Büttcher et al. [1], they do not evaluate their approach under
a finite-pool scenario. Though this means that our results are not di-
rectly comparable, our same baseline configuration described above
roughly reproduces their SVM approach.

For AL document selection, we evaluate the same CAL and SAL
methods [23] that [7] assess in the domain of e-discovery, where they
focus on set-based rather than ranked retrieval. Moreover, judging
cost is also measured differently in e-discovery: no document can be
“screened in” automatically since all must be reviewed for privilege
following discovery. Recently, Cormack and Grossman [9] propose
a variant of “S-CAL” [8], which rather than selecting the highest-
scoring documents for relevance judgment, randomly samples some
documents from those the highest-scoring documents for annotation.
They report results on the collected human relevance judgments (e.g.
TREC pool documents) but not hybrid judging.

Carterette and Allan [2] apply Carterette et al. [3]’s document
selection method to iteratively collect relevance judgments. Based
on the cluster hypothesis, their per-topic logistic regression classifier
estimates the probability of relevance of an unjudged document
conditional on its similarity to other judged documents in the cluster
(e.g. relevant and non-relevant document clusters). A key difference
with our work is that their document selection strategy relies on
having run a shared task.

Similarly, Nguyen et al. [21] investigate AL-based relevance judg-
ing in the domain of systematic-review in medicine, which bears
much in common with e-discovery [17]. As above, AL is used to
reduce labeling costs, but without intent to construct a test collection
or evaluate IR systems based on automatic labels. They also adopt
a finite-pool evaluation setting, but unlike us, they use both trusted
judges and crowds in combination for human judging.

Rajput et al. [24] develop a framework for constructing a test
collection using an iterative process between updating nuggets and
annotating documents. However, because their automatic nugget ex-
traction fails to extract nuggets from documents which are difficult
to parse (e.g. TREC Web Track), the authors fall back to using docu-
ment rankings from participating systems of a shared task evaluation.
Li and Kanoulas [19] also utilize a shared task by inducing a proba-
bility distribution from the participating systems and a probability
distribution over the ranks of the documents. They then actively sam-
ple documents from the joint distribution to construct an unbiased
test collection.

3 PROPOSED APPROACH
3.1 Task Definition and Learning Model
We assume the Cranfield model of system-based IR evaluation that is
based on pre-defined search topics and relevance judgments. In order
to construct a hybrid human-machine system for binary relevance
judging of collection documents, we induce a topic-specific binary
classifier 𝑐 𝑗 for each search topic 𝑗 in the topic set 𝑇 of 𝑛 topics. As-
sume we have a document collection 𝑋 of𝑚 documents (represented
by extracted features). Let 𝑦𝑖

𝑗
denote the binary relevance judgment

for <document 𝑖, topic 𝑗>. The training data for topic 𝑗 is comprised
of a set of pairs ⟨𝑥𝑖 , 𝑦𝑖

𝑗
⟩.



For each search topic for which we wish to train a topic-specific
classifier 𝑐 𝑗 , we must collect topic-specific training data. As we uti-
lize the probability of relevance 𝑝 (𝑦𝑖

𝑗
|𝑥𝑖 ) in the document selection

criteria, we adopt logistic regression2 as our learning model to infer
the probability of relevance 𝑝 (𝑦𝑖

𝑗
|𝑥𝑖 ) for each document 𝑥𝑖 for topic

𝑗 :

𝑝 (𝑦𝑖𝑗 |𝑥
𝑖 ) = ℎ𝜃 (𝑥𝑖 ) =

1
1 + exp(− #»

𝜃 𝑇 𝑥𝑖 )
(1)

with
#»

𝜃 ∈ R𝐷 model parameters. We set 𝜆 = 10−8 in all reported
experiments after tuning on [20]’s dataset. We adopt the canonical
TF-IDF representation of documents.

In unreported experiments (due to lack of space), we compared
logistic regression vs. support vector machine (SVM)2 [12] and
XGBoost3 [5] models. Evaluating F1 accuracy on [20]’s dataset, we
found that tuned logistic regression performed comparably to the
tuned SVM and marginally better than XGBoost. Moreover, in terms
of wall clock time, logistic regression is far faster than SVM and
XGBoost, which is a significant advantage for AL.

Algorithm 1: Active Learning Algorithm
Input :Document collection 𝑋 • batch size 𝑢 • total budget

𝑏

Output :Relevance judgments 𝑅1:𝑛 for topics 1 : 𝑛
1 for topic 𝑗 ← 1 to 𝑛 do
2 Select seed documents 𝑆 ∈ 𝑋 for topic 𝑗

3 𝑅 𝑗 ← {⟨𝑥𝑖 , 𝑦𝑖
𝑗
⟩ | 𝑥𝑖 ∈ 𝑆} ⊲ Collect initial judgments

4 Learn relevance classifier 𝑐 𝑗 using 𝑅 𝑗

5 𝑏 ← 𝑏 − |𝑆 | ⊲ Update remaining budget
6 end
7 while True do
8 for topic 𝑗 ← 1 to 𝑛 do
9 if 𝑏 < 𝑢 then return ⊲ Budget exhausted

10 ∀𝑥 ∈ 𝑋 predict topical relevance of document 𝑥 using
𝑐 𝑗

11 Select 𝑢 documents 𝑆 ∈ 𝑋 to judge next for topic 𝑗

12 𝑅 𝑗 ← 𝑅 𝑗 ∪ {⟨𝑥𝑖 , 𝑦𝑖
𝑗
⟩ | 𝑥𝑖 ∈ 𝑆} ⊲ Collect judgments

13 Re-estimate relevance classifier 𝑐 𝑗 using expanded 𝑅 𝑗

14 𝑏 ← 𝑏 − 𝑢 ⊲ Update remaining budget
15 end
16 end

3.2 Active Learning
An active learning [27] algorithm iteratively selects which document
𝑥𝑖 should be labeled next in order to maximize the classifier’s learn-
ing curve for each topic. This reduces the amount of human effort
required to induce an effective model. Algorithm 1 describes our
active learning strategy to develop a test collection. The first loop

2 We utilize the implementation of logistic regression and support vector machine
(SVM) from Scikit-learn package (https://scikit-learn.org/), a machine learning library
in Python programming language.
3We use the implementation of XGBoost from https://xgboost.readthedocs.io/en/latest/
python/python_intro.html

(Lines 1-6) collects the seed document labels for each topic and
trains a topic-specific document classifier using the seed documents.
In the second loop (Lines 7-14), the learned classifier is used to
select documents for further annotation. For selecting documents
(Line 10), we employ the strategies discussed in the Document Se-
lection Criteria section below. Those further annotated documents
are employed to re-train the topic-specific classifier. This process
continues iteratively until we exhaust the allocated budget.

3.2.1 Seed Document Selection. In order to learn a topic-
specific document relevance classifier, topic-specific training data is
needed. We assume that no such labeled data for each topic exists in
advance. Consequently, we must collect an initial seed set of human
relevance judgments for each search topic in order to initialize our
AL model. While we could simply select a (uniform) random sample,
it is unlikely with large class imbalance that such random selection
would find any relevant documents; just imagine randomly sampling
documents from the Web in order to find a relevant document for a
particular topic. Instead, we consider two scenarios:

Interactive Search (IS): IS is also known as search-guided as-
sessment [22]. Our IS scenario assumes traditional TREC practice for
constructing search topics. The assessor searches the document col-
lection in order to find some minimal set of relevant and non-relevant
documents in order to establish the topic as viable. If insufficient
relevant documents are found, the topic is discarded (topics with
too few relevant or non-relevant documents provide little informa-
tion for IR system evaluation). Whereas the NIST process above
would traditionally discard these initial judgments, we would instead
keep them as the seed set for active learning. As such, we would
essentially get seed documents for AL for free as a by-product of
topic development, but we nevertheless include the cost of these
judgments like any others in our reported experiments.

Rank-based Document Selection (RDS): This scenario sup-
ports seed data selection when there is no interactive search interface
or when no judgments are collected during topic formation, as in the
TREC Million Query (MQ) Track [4]. Instead, we assume access to
a single, moderately effective off-the-shelf or in-house IR system.
Given a search query as input, the document collection is searched
to produce a ranked list of documents. The assessor is then asked
to proceed down the ranked list until at least 𝑘 relevant and non-
relevant document(s) have been found, or some maximum effort is
reached without success. In this latter case, the topic is discarded, as
in typical TREC practice discussed in the IS scenario above. While
shared task pooling identifies top-ranked documents for judging,
RDS selects seed documents via only a single system ranking, then
relies on AL to identify further relevant documents in order to create
a robust topic.

3.2.2 Batch Active Learning. We assume AL selects the next
most informative instance to label from a fixed set of unlabeled
instances — the set of unlabeled documents [18]. We also assume
batch learning, in which at each time step, we select 𝑢 unlabeled
examples to label next.

3.2.3 Document Selection Criteria. We consider three docu-
ment selection strategies [7]: Simple Passive Learning (SPL), Simple
Active Learning (SAL), Continuous Active Learning (CAL).

https://scikit-learn.org/
https://xgboost.readthedocs.io/en/latest/python/python_intro.html
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Table 1: Test collection statistics. As collections have grown
larger, judging budgets have also shrunk, leading to increased
prevalence of relevant documents in later tracks.

Track Collection Topics #Docs #Judged %Rel
2014 Web Track (WT’14) ClueWeb12 251-300 52,343,021 14,432 39.2%
2013 Web Track (WT’13) ClueWeb12 201-250 52,343,021 14,474 28.7%
2006 Terabyte Track (TB’06) Gov2 801-850 25,205,179 31,984 18.4%
1998 Adhoc Track (Adhoc’98) Disks 4,54 351-400 528,155 80,345 5.8%
1999 Adhoc Track (Adhoc’99) Disks 4,5 401-450 528,155 86,830 5.4%

SPL selects documents uniformly at random, corresponding to
traditional supervised learning in which training data is assumed to
be sampled i.i.d. from the domain. Including passive SPL provides a
useful comparison vs. active selection methods.

SAL selects the document to label next for which the current
model is maximally uncertain of its correct label, such that labeling
this document is expected to maximally inform the current model.
We adopt a common uncertainty function based on entropy [30]:

U𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 (𝑥) = −
∑
𝑦∈𝑌

𝑝 (𝑦 |𝑥) log 𝑝 (𝑦 |𝑥) (2)

where 𝑝 (𝑦 |𝑥) is the a posteriori probability from the classifier and 𝑦
is relevant or non-relevant. With binary relevance, SAL selects:

𝑥★ = argmin
𝑖
|𝑝 (r𝑒𝑙𝑒𝑣𝑎𝑛𝑡 |𝑥𝑖 ) − 0.5| (3)

With CAL, the learning algorithm selects the unlabeled document
which the current model predicts is most likely to be relevant:

𝑥★ = argmax
𝑖

𝑝 (r𝑒𝑙𝑒𝑣𝑎𝑛𝑡 |𝑥𝑖 ) (4)

While SAL is more commonly used in AL, Cormack and Grossman
[7] find that CAL is more effective. However, note that their task
goal is to find as many relevant documents as possible, assuming
assessors must manually label any relevant documents. In contrast,
our goal is to optimize a human-model hybrid system.

4 EXPERIMENTAL SETUP
4.1 Datasets and Preprocessing
We conduct our experiments on five TREC tracks (see Table 1). As
shown in Table 1, later tracks show increasing prevalence of relevant
documents in judged pools, from approximately 5% to almost 40%.
Note that since we assume binary relevance in this work, we collapse
NIST graded relevance judgments to binary.

To select seed documents under the IS setting, we assume 5 rele-
vant and 5 non-relevant seed judgments for all topics are produced
during topic creation (otherwise the topic would have been discarded
and never used). We report the cost of these judgments like any other
judgments collected during AL (i.e., cost of 10 here). Over all 5
collections, only 5 total topics were found to have < 5 relevant docu-
ments, and so only these 5 topics were discarded (consistently across
all reported experiments).

For the RDS setting, rather than running our own IR system, we
randomly select an existing ranking from each TREC track from
the set of participating systems (see Table 2 for statistics of our

4Adhoc’98 and Adhoc’99 tracks exclude congressional record from TIPSTER Disks
4,5

Table 2: MAP scores of systems used for Rank-based Document
Selection (RDS) vs. track average and std. deviation.

Track MAP Track Avg. Track STD.
WT’14 0.181 0.165 0.065
WT’13 0.111 0.115 0.041
TB’06 0.350 0.276 0.089
Adhoc’98 0.186 0.194 0.080
Adhoc’99 0.260 0.234 0.096

randomly-selected system vs. statistics of other participating sys-
tems). We assume the assessor proceeds down the ranked list until
at least 1 relevant and 1 non-relevant document is found, after which
we proceed using AL.

4.2 Pool Document Collection vs. Complete
Document Collection

One question in experimental setup is how to handle documents
outside of the TREC judgment pools, for which no human relevance
judgment is available. We describe here several alternative evaluation
settings for addressing this. Note that this is only an evaluation issue,
and does not alter the actual AL algorithms.

1) Pool Document Collection. In this setting, we restrict AL
to the original set of pool documents, meaning that it can only
request labels for pool documents. For any such selected document,
we simply lookup the original NIST assessor judgment for it (i.e.,
retrospective AL evaluation based on previously collected labels).
We consider two applications of AL in this setting:

i) Human-only Judging. Traditional practice uses only human
judgments to label pool documents. We first evaluate AL for docu-
ment selection only, i.e., determining the best set of documents for
human assessors to judge for a given assessment budget in order
to best evaluate IR systems. As the size of the evaluation budget
approaches the full pool size, we converge to the original TREC
results.

ii) Hybrid Judging. Next, we further consider using AL to fur-
ther automatically label the relevance of remaining pool documents
for which the AL system has not requested a human judgment. We
then evaluate whether such hybrid judging improves evaluation vs.
using only human judgments. As the size of the evaluation budget
approaches the full pool size, we converge to human-only judging.

2) Complete Document Collection. In this evaluation setting,
we consider applying AL to label the complete document collection,
rather than only the pool. While NIST relevance judgments exist
for pool documents, whenever AL requests a label for a non-pool
document, the evaluation framework must somehow still provide a
label. As an expedient solution, the evaluation framework simply
returns a non-relevant label to AL for all non-pool documents. While
this solution is far from perfect, since AP also assumes non-judged
documents are non-relevant, this should tend to bias AL predictions
in a consistent direction with original TREC pool results based on
AP.



4.3 The Finite-Pool Scenario for Evaluating
Active Learning

The goal of our task is to maximize labeling accuracy relative to
cost (i.e., the number of human judgments requested). At one end
of the decision-space, we could use human judging exclusively and
forgo automatic classification altogether. This corresponds to tradi-
tional human-only relevance judging. Because we assume human
assessors are infallible, this maximizes labeling accuracy, but this
high accuracy comes at maximal cost. At the other extreme, all doc-
uments could be automatically classified. This minimizes cost (since
it completely eliminates human judging) but also minimizes accu-
racy, since there are no human labels collected to train the classifier.
Between these two extremes lies a rich decision-space of hybrid
judging in which labeling is divided between man and machine [21].

This AL evaluation setting is known as a finite-pool [21], and it
differs markedly from typical machine learning (ML) evaluation.
Typically, one trains a classifier on one set of data then evaluates it on
a separate test set, assessing classifier generalization from training
data. In contrast, the finite-pool setting has no prior training data,
nor do we care about classifier generalization to some future testing
data; all we care about is labeling the present, finite set of documents
before us. Following this, any learned classifier is simply discarded.
We believe this evaluation setting best represents the actual scenario
interest — building a new test collection — though we diverge here
from related prior work [1, 15]. With regard to terminology, note that
the term finite-pool comes from AL and has no relation to pooling
in IR evaluation. This unfortunate terminology collision stems from
bridging these disparate literatures.

4.4 Evaluation Metrics
Effectiveness Curves and AUC. We present our results as plots
showing cost vs. effectiveness of each method being evaluated at
different cost points (corresponding to varying evaluation budget
sizes). In general, different test collections might be built with dif-
ferent annotation budgets. We also report Area Under Curve (AUC)
across all cost points, approximated via the Trapezoid rule.

Cost. We measure cost with regard to manual judging budget, i.e.,
the cost of human judgments (assuming automatic classification is
free). We report cost in batch size increments. Specifically, we use
10% of the pool size for each topic as the batch size, reporting results
at {0%, 10%, 20%, . . . , 100%} human judging of each topic’s pool
(where 100% corresponds to the original TREC pool size). Note that
we assume cost of each human label as constant, whether it be in
seed judging (IS or RDS) or during AL.

Labeling Accuracy. We measure our hybrid (human + automatic)
AL labeling accuracy in terms of 𝐹1, as averaged across topics.

Rank Correlation. We also assess the reliability of using our
labeling methods to evaluate IR systems. A relative performance
ranking of participating systems in each track is then induced based
on these metrics. As ground truth ranking, we calculate inferred
AP (infAP) [32] scores for participating systems using all NIST
judgments, as computed via standard trec_eval. We then com-
pute the Kendall’s 𝜏 rank correlation [16] between the ground-truth
system ranking vs. our proposed method’s ranking. By convention
[31], 𝜏 = 0.9 is assumed to constitute an acceptable correlation level
for reliable IR evaluation.

5 RESULTS AND DISCUSSION
5.1 Evaluation on the Pool Document Collection
In this section, we present experimental results on the Pool Docu-
ment Collection. We begin by evaluating labeling accuracy of our
hybrid AL approaches. This is followed by reporting Kendall’s 𝜏 rank
correlation results using AL for (i) human-only (incomplete) judg-
ing of pool documents; and (ii) hybrid human-machine (complete)
labeling of all pool documents. For the Pool Document Collection
setting, we omit reporting results on the Adhoc’98 collection due to
space constraint.

5.2 Classification Results on the Pool Document
Collection

We first report F1 labeling performance of our hybrid AL approaches.
As discussed before, we consider two scenarios for how seed docu-
ments are selected to initialize AL: IS and RDS.

Figure 1 presents F1 performance results of the three document
selection approaches: SPL, SAL, and CAL. The x-axis of each
plot indicates the percentage of pool documents manually judged
(using NIST labels), with the remainder of the pool automatically
labeled by the classifier. NIST judges are treated as infallible, so all
methods ultimately converge to 100% F1 at the right-end of each
plot, corresponding to complete manual judging of the entire pool.

Seed Selection Scenarios. As noted earlier, IS and RDS results
should be understood as corresponding to distinct scenarios, rather
than alternative methods to be compared vs. one another.

Active vs. Passive Learning. Comparing active learning (SAL
and CAL) against passive learning (SPL) methods, Figure 1 shows
that SAL or CAL consistently outperforms SPL in terms of AUC.
We also see that for TB’06 and Adhoc’99 collections, both CAL and
SAL with IS perform comparably, requiring around 30% (TB’06)
and 40% (Adhoc’99) of human judgments to achieve 90% F1 mea-
sure. In contrast, SPL requires 60% for TB’06 and 70% for Ad-
hoc’99.

CAL vs. SAL. It is evident from Figure 1 that CAL consistently
provides better performance than SAL in terms of AUC in low
prevalence test collections (TB’06 and Adhoc’99). On the other
hand, for high prevalence test collections (WT’14 and WT’13) SAL
dominates CAL (e.g. for 3 out of 4 different plots SAL wins over
CAL). This finding is consistent with that of Cormack and Grossman
[7], despite the various differences between our studies discussed
earlier.

Varying Scarcity of Relevant Documents. Prevalence of rele-
vant documents can vary widely across different test collections, as
well as across topics within a single test collection. For example,
WT’14 has the highest average prevalence (around 40%), while
Adhoc’99 has only 5% average prevalence of relevant documents.
Looking at Figure 1, we see that varying prevalence plays an impor-
tant role in explaining the differing performance of AL vs. passive
learning. For TB’06 and Adhoc’99, where we have a low prevalence
rate (less than 20%), SAL and CAL outperform SPL by a large
margin. However, with the higher prevalence rates in WT’13 and
WT’14, SPL performs much better, though is still outperformed by
SAL. Another notable observation is that as we move from higher
prevalence collections (e.g., WT’14) to lower prevalence collections



Figure 1: Human judging cost (x-axis) vs. F1 classification accuracy (y-axis) for hybrid human-machine judging of document pools
for four TREC Tracks. The % of human judgments on x-axis is wrt. the number judged for each collection (Table 1).

(e.g., Adhoc’99), AUC of CAL with IS consistently increases; the
same does not always hold for SAL.

5.3 Rank Correlation Results on the Pool
Document Collection

As discussed before, we consider two applications of AL for aiding
IR test collection construction: 1) selecting documents for human
judging; and 2) further automatic labeling of all remaining unjudged
documents (in the pool). We evaluate these two approaches in turn.
Results in this section assume the IS setting.

Figure 2 presents Kendall’s 𝜏 rank correlation results using infAP.
The x-axis indicates the percentage of the pool manually judged, and
the y-axis indicates 𝜏 correlation. We plot results for CAL and SAL
strategies, as well as baseline SPL.

Using Human-only Judging. We first consider evaluating IR
systems using only human judgments of the documents selected by
AL. This is shown in the bottom row of the figure. We see that CAL
consistently achieves the highest 𝜏 correlation wrt. AUC for infAP.

Using Hybrid Judging. We next consider the second condition
of hybrid judging: automatically labeling the remainder of pool doc-
uments beyond those manually judged. This is shown in the top row
of Figure 2. Again we can see that prevalence ratio plays an impor-
tant role. For example, for low prevalence collections (e.g. TB’06
and Adhoc’99), AL with hybrid judging far exceeds performance of
SPL. In contrast, for high prevalence collections, SPL surprisingly
outperforms CAL and SAL.

Human vs. Hybrid Judging. Table 3 collects the best AUC
performance among the three protocols in each plot of Figure 2.
The results from Table 3 suggests that hybrid judging is always
superior to human-only judging. Another notable factor is that for
high prevalence collections, hybrid judging achieves a 𝜏 correlation
of 0.9 with only using 20% of human judgments. In contrast, human-
only judging requires about 40% of human judgments to achieve
the same 𝜏 correlation (Figure 2). This establishes the superiority of

Table 3: Average (AUC) Kendall’s 𝜏 rank correlation achieved,
with and without automatic labeling, by the best performing
methods in Figure 2 (see its AUC results).

Labeling WT’14 WT’13 TB’06 Adhoc’99
Hybrid 88.8 (SPL) 85.3 (SPL) 84.5 (CAL) 88.6 (CAL)

Human-only 81.7 (CAL) 80.8 (CAL) 82.3 (CAL) 88.4 (CAL)

hybrid labeling both in terms of cost and efficiency since collecting
more human judgments is more time consuming and expensive.

5.4 Evaluation on the Complete Document
Collection

In this section, we evaluate the effectiveness of our method on the
complete document collection. As discussed earlier, whenever the
AL system requests a label for a document outside of the pool,
we simply return a judgment of non-relevance. As in earlier result
figures, we plot the percentage of human judgments on the x-axis,
but note that: 1) this percentage is now over the entire collection,
rather than only the pool; and 2) this percentage encompasses both
actual human judgments (from NIST) and simulated judgments for
non-pool documents. As previously reported, results in this section
assume the IS setting. We report evaluations only for Adhoc’98 and
Adhoc’99 tracks due to space constraint.

5.4.1 Classification Results on the Complete Document
Collection. Figure 3 presents F1 performance results of the three
document selection approaches: CAL, SAL and SPL. As noted
earlier, the x-axis of each plot indicates the percentage of documents
either judged using NIST labels (manual) or assumed non-relevant,
with the remainder of the collection automatically labeled by the
classifier. From Figure 3, we find that to achieve an F1 measure
of 0.9, CAL and SAL need 50% of hybrid judgments. In contrast,
recall that when we evaluated same Adhoc’99 collection assuming



Figure 2: Kendall’s 𝜏 rank correlation achieved with and without automatic labeling. Top Row: hybrid human-classifier labeling.
Bottom Row: human judgments only. Systems are evaluated using infAP. Ground truth ranking is induced by system infAP scores
using all NIST judgments.

Figure 3: Judging cost (x-axis) vs. F1 classification accuracy
(y-axis) for hybrid human-machine relevance judging for two
TREC Tracks. The % of judgments on x-axis is given wrt. the
total number of documents in each collection (Table 1). Note
that “human judgments” here encompasses both actual NIST
judgments for pool documents and simulated judgments of non-
relevance for non-pool documents.

the collection was limited to the pool (Figure 1, Bottom Row, IS
setting), only 30% of human judgments were needed to achieve
F1 = 0.9. This shows that running AL from scratch over the entire
document collection appears more challenging than starting from the
filtered pool. One issue, as discussed earlier, is that assuming non-
pool documents to always be non-relevant will sometimes be wrong.
Given that the pool size is approximately 1/6 of the collection size
(for Adhoc’98 and Adhoc’99), AL is roughly 5 times more likely
to select a non-pool document for judging which is assumed to
be non-relevant. Moreover, as learning progresses, these assumed
non-relevant documents will increasingly impact selection of future
documents for judging, which could lead to less and less judging of
pool documents on which the original TREC evaluation was based.

5.4.2 Rank Correlation Results on the Complete Document
Collection. We consider how the ranking of systems induced from
the hybrid human-classification correlates with the ranking of the
same systems induced from NIST judgments (Figure 4). From Fig-
ure 4, two (2) observations are immediately evident. Firstly, CAL
and SAL consistently outperform SPL in both Adhoc’99 and Ad-
hoc’98 tracks. Secondly, CAL is superior to SAL when the allocated

budget is relatively low (e.g. when only 10% of entire document
collection are judged, CAL achieves the highest 𝜏 ≈ 0.85, whereas
at the same budget SAL achieves only 𝜏 ≈ 0.79 ). Note that these
findings are consistent with the experimental evaluation reported on
Adhoc’99 collection assuming the collection is limited to the TREC
pool only (Figure 2).

Finally, we investigate the effectiveness of our AL based approach
in constructing a test collection without organizing a shared task in
terms of cost. Here the measurement of cost is purely in terms of col-
lected human judgment since quantifying the other costs involved in
organizing a shared task is beyond the scope of this article. Approx-
imately 15.8% of documents are judged by NIST TREC for these
two collections which is the only quantifiable cost associated with
NIST TREC along with other costs. In contrast, our best performing
AL approach, CAL, achieves a 𝜏 ≈ 0.89 with the original NIST
judgments when we judge the same number of documents (≈ 15.8%
which is depicted by dark-cyan colored vertical lines in Figure 4) and
unlike TREC, CAL involves no other costs. This shows feasibility
of developing a test collection without a shared task.

Figure 4: Kendall’s 𝜏 rank correlation results corresponding
to classification results in Figure 3. Systems are evaluated us-
ing infAP. Ground truth ranking is induced by system infAP
scores using all NIST judgments. The dark-cyan colored verti-
cal line shows the percentage of documents from the complete
document collection which were judged by NIST in the original
TREC pool.



6 CONCLUSION AND FUTURE WORK
We have proposed AL for both intelligent document selection and
automatic labeling of unjudged documents. Experimental findings
suggest that for pool documents, hybrid human-machine labeling ap-
proach achieves 90% F1 in annotating documents when their human
counterparts provide on average 58% fewer annotations (Figure 1).
Similarly, in terms of Kendall’s 𝜏 rank correlation, hybrid human-
machine labeling significantly outperforms the human-only judging
across all four test collections (Table 3). Furthermore, for the com-
plete document collection which contains both pool and non-pool
documents, our experimental evidence helps us to hypothesize that
assigning a non-relevant label for every non-pool document without
considering the actual content of those documents is not beneficial
to the document selection and the annotating performance of AL.
Despite having these limitations in the complete document collec-
tion scenario, by annotating only ≈ 15.8% of documents from the
document collections, our AL based approach constructs a test col-
lection having a 𝜏 ≈ 0.89 with the original NIST judgments (Figure
4). However, further experiments should be performed on document
collections (e.g., WT’14, WT’13, etc.) where the assumption that
non-judged documents are non-relevant does not hold completely.

Various directions remain for future work. Predicting relevance
judgments via a classifier introduces the obvious risk of biasing
evaluation toward systems applying a similar model for document
ranking. How to best handle non-pool documents is also unclear;
one could collect new relevance judgments, but they may diverge
from relevance criteria of the original judges.
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