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ABSTRACT

Fact-checking, the task of assessing the veracity of claims, is
an important, timely, and challenging problem. While many
automated fact-checking systems have been recently proposed,
the human side of the partnership has been largely neglected:
how might people understand, interact with, and establish trust
with an Al fact-checking system? Does such a system actually
help people better assess the factuality of claims? In this pa-
per, we present the design and evaluation of a mixed-initiative
approach to fact-checking, blending human knowledge and
experience with the efficiency and scalability of automated
information retrieval and ML. In a user study in which partici-
pants used our system to aid their own assessment of claims,
our results suggest that individuals tend to trust the system:
participant accuracy assessing claims improved when exposed
to correct model predictions. However, this trust perhaps goes
too far: when the model was wrong, exposure to its predictions
often degraded human accuracy. Participants given the option
to interact with these incorrect predictions were often able im-
prove their own performance. This suggests that transparent
models are key to facilitating effective human interaction with
fallible AI models.
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INTRODUCTION

In designating October 2009 as National Information Literacy'
Awareness Month, former U.S. President Barack Obama drew
national attention to a key 21st century information challenge:

Though we may know how to find the information we
need, we must also know how to evaluate it. Over the
past decade, we have seen a crisis of authenticity emerge.
We now live in a world where anyone can publish an
opinion or perspective, whether true or not, and have that
opinion amplified within the information marketplace.

Historically, we have relied upon information literacy edu-
cation in our schools and libraries to teach our citizenry key

1https ://en.wikipedia.org/wiki/Information_literacy

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

UIST 18, October 14-17, 2018, Berlin, Germany

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-5948-1/18/10... $15.00

DOI: https://doi.org/10.1145/3242587.3242666

byron@ccs.neu.edu

2Northeastern University
ml@utexas.edu

critical reading skills, the importance of consulting multiple,
independent sources, and to investigate the potential for under-
lying bias in whatever we read. For this reason, information
literacy has been advocated as “a distinct skill set and a nec-
essary key to one’s social and economic well-being in an
increasingly complex information society.” [26]

However, the internet era presents new challenges to con-
sumers of information. As information generation has accel-
erated, making sense of it has become increasingly difficult.
While breaking down traditional barriers to authorship has
democratized information exchange and dissemination, the
massive growth of information production by less-established
sources has created significant new challenges for readers in
accurately interpreting and assessing the veracity of this bar-
rage of content [47, 10]. The deluge of new online articles
and sources means that is practically difficult for individuals
to consistently manually cross-check sources. The rise of mis-
information — unwitting or deliberate — has made it harder still
for readers to tell fact from fiction.

In response, researchers in machine learning (ML) and natural
language processing (NLP) have developed a variety of innova-
tive new models that automatically fact-check claims [34, 31,
40]. However, these works have largely viewed fact-checking
as a standard ML task in which the aim first and foremost is to
achieve high predictive accuracy. While improving predictive
accuracy is a laudable goal, we believe that consideration of
the human element is equally important if such models are to
be useful in practice.

We argue that fact-checking models must provide three key
properties for practical use: (i) model transparency, (ii) sup-
port for integrating user knowledge; and (iii) quantification
and communication of model uncertainty. Regarding (i), high
predictive accuracy alone is insufficient; someone skeptical
of online information is likely to be equally skeptical of any
fact-checking tool. Indeed, many people distrust popular fact-
checking services [4]. Consequently, a system must be trans-
parent (and auditable) in how it arrived at its prediction so
that a user can understand and trust the model. Concerning
(ii), claim assessments will invariably rely at least partially on
world-views (priors) pertaining to the perceived a priori cred-
ibility of claims and sources; a fact-checking system should
enable explicit, individual specification of these, in turn pro-
viding a framework for users to easily inject their own views
and knowledge into the system and realizing an integrated
prediction that incorporates these. Finally, addressing (iii),
system predictions ought to be presented as relative statements
with respect to incomplete model specification and knowledge,
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rather than definitive judgments: an ML model should com-
municate its confidence in its predictions while accounting for
potential sources of errors, empowering users to conduct their
own in-depth inspection and reasoning.

In this work we present a mixed-initiative [19] approach that
realizes the three properties above. We position automatic
fact-checking as an assistive technology to augment human
decision making. To intuitively complement and reinforce the
information literacy skills that users bring to the partnership,
we have designed the system to follow the same key steps ad-
vocated by information literacy education in order to estimate
claim veracity: 1) find relevant articles (textual evidence); 2)
assess each article’s reliability and its relative support for the
claim in question; and 3) assess claim validity based on this
body of textual evidence. Moreover, by making the model’s
reasoning process transparent to the user and interactive, our
interface has further potential to help teach and structure the
user’s own information literacy skills regarding the logical
process to follow for assessing claim validity.

Our mixed-initiative approach to fact-checking blends human
knowledge and experience with the efficiency and scalability
of automated information retrieval and Al. Given a claim in
natural language, the system first automatically finds and re-
trieves relevant articles from a variety of sources. It then infers
the degree to which each article supports or refutes the claim,
as well as the reputation of each source. Finally, the system
aggregates this body of evidence to predict the veracity of the
claim. Regarding user interaction, the (automatically inferred)
source reputation and stance of each retrieved article can be
changed via simple sliders to reflect user beliefs and/or to
correct erroneousness model estimates. This, in turn, instantly
updates the system’s overall veracity prediction.

To evaluate our approach, we conduct three randomized ex-
periments, designed to measure the participants’ performance
in predicting the veracity of given claims. The first compares
users who perform the task with and without seeing ML pre-
dictions. Our results suggest that users tend to trust the model,
even when it is wrong. The second compares a static interface
to an interactive one in which users can fix or override model
predictions. We found that users are generally able to do so,
although this is less helpful when the model makes correct
predictions. The last experiment compares a gamified task
design to a non-gamified one, but we found no significant
differences in performance and participation.

Contributions. We provide: (1) a novel mix-initiative ap-
proach to fact-checking, combining human and machine in-
telligence; and (2) a user study of our approach, revealing the
practical promise and challenges of this human-Al partnership.
To foster future work by others, we share our anonymized data,
source code for significance testing, and an interactive demo?.

RELATED WORK

Information Credibility
Someone skeptical of online information is likely to be equally
skeptical of any fact-checking website or software. For exam-
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ple, many people are reported to distrust popular fact-checking
services [4]. Just as we consider information credibility fac-
tors [16] in assessing a news article or website, therefore, we
must also consider such factors in designing a website or web
application to support fact-checking.

Some established best practices include: websites should be
clearly organized and navigable, professional looking, well
written, updated, and functional [16, 18]. More specific to this
domain, sites and tools should be explicit about any potential
sources of bias, e.g., by providing an “about” page to provide
context, indicating any paid sponsors, discussing or posting an
ethical code, and admitting when a mistake has been made. In
relation to asking users to perform a potentially complicated
task (e.g., consulting various uncertain evidence to fact-check
a questionable claim) which heightens user uncertainty, a clean
and usable website is even more important to further reduce
cognitive load [43]. We have sought to adhere to the above
best practices in designing our prototype web application.

Human Fact-checking and Information Literacy

Websites such as Snopes and PolitiFact have become increas-
ingly important in providing expert fact-checking of popular
claims. However, the reliance on human labor, particularly
experts, does not scale to lets users check arbitrary claims.

Crowdsourcing-based fact-checking sites, such as TruthSet-
ter?, now also provide more scalable, peer-based assessment.
Our design is inspired in part by recent research on crowd-
sourced fact-checking [41, 42] which suggests that

... the best remedy for propaganda and misinformation
intended to manipulate public opinion is helping readers
engage in critical thinking and evidence-based reason-
ing. .. [which] can have benefits well beyond identifying
specific instances of “fake news” - it can teach users
the critical thinking skills needed to detect and evaluate
misinformation and fake news ...

In that work [41, 42], users can post claims, and other users
can then share related sources, stances, and claims. We simi-
larly structure the claim evaluation process through evidence
collection and assessment. Whereas they develop a social,
volunteer crowdsourced solution, we propose mixed-initiative
approach between a single user and a machine learning sys-
tem. Future work might usefully further integrate information
literacy education with fact-checking of claims.

Another intriguing approach to teaching information literacy
turns the process on its head, engaging people in gamified
generation of fake news stories. By learning how to write fake
news, participants were subsequently found to be less likely
to believe or be persuaded by actual fake news articles [37].

Al-based Fact-checking

Many recent studies have explored the potential of Al for auto-
mated fact-checking [50, 49, 13, 34, 32, 45, 24]. These studies
have primarily focused on model variants and techniques that
increase the predictive performance of models (e.g., accuracy
in predicting veracity). Hybrid work combining ML with
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crowdsourcing [24, 32] has similarly focused on predictive
accuracy, without considering information literacy educational
objectives, or exposure consequences, for the crowd [41, 48].
While some models do generate explanations for their predic-
tions [34, 32], it remains unclear how users might interpret
and interact with these predictions. Our work in this area is
distinguished by our human-centered approach: our mixed-
initiative design emphasizes the human-Al partnership, and
our evaluation measures how use of such predictive systems
impacts human inference in assessing claim veracity.

Recently, [22] present a visual analytic system for users to
detect social media accounts that distribute misinformation.
This is complementary to our goal of detecting false claims.
Furthermore, although their system is inspired by a prediction
model prediction [49], the users can not directly interact with
that model to correct and override when its prediction is wrong.

Designing Human-Al Interfaces

As Al has been embedded within an increasing number of hu-
man facing applications, there has been a concomitant growth
in interest in designing interfaces for humans to interpret and
interact with these systems and predictions [1, 8]. In response,
researchers have proposed a variety of novel interfaces for
interacting with machine learning models, but these tend to
require significant expertise on behalf of users [2, 25]. Oth-
ers have developed interaction techniques tailored to specific
tasks, such as image segmentation [11], image search [15],
text classification [28], topic models [44], code search [36],
and others. The fact-checking task is especially challenging,
as the the system needs to present convincing evidence for its
predictions, assuming users are (understandably) skeptical.

Beyond making ML more interpretable for people, there is
also increasing appreciation for the greater potential capabili-
ties that may be possible with hybrid AI-human collaboration.
Jordan and Mitchel [21] recently opined about the kind of
strengths each side of such a partnership, noting the potential
to harness ML’s ability to extract subtle statistical patterns
from large datasets in concert with human skills in pulling
these into plausible narratives informed by diverse perspec-
tives. Such partnerships are now materializing even in creative
endeavors, such as Al-human co-design of fashion [23, 46],
creative writing [6, 35], and music composition [14].

To build such effective partnerships, Horvitz’s suggestions for
mixed-initiative design [19] remain relevant today, e.g.:

We can enhance the value of automation by giving agents
the ability to gracefully degrade the precision of service
to match current uncertainty. .. We should design agents
with the assumption that users may often wish to com-
plete or refine an analysis provided by an agent.

Our system openly conveys its fallibility by showing the confi-
dence of each prediction to the user. By clearly communicat-
ing rather than hiding this uncertainty, the system discourages
users having over-confidence in the model or making poor
decisions based on such a misunderstanding. Instead, the sys-
tem presents the evidence it has in favor of its disposition, and
leaves it to the user to consider this evidence in the context of
their own prior knowledge and experience. We further provide

an interaction mechanism by which users can inject their own
beliefs into the system to refine its predictions.

Without users having a mental model of how the system com-
bines evidence to predict claim veracity (i.e., model trans-
parency), such interaction would not be possible. The impor-
tance of model transparency has been similarly reported in
other studies, such as Kulesza et al. [27]’s report of a case
study in which users responded positively to greater model
intelligibility; as users learned more about the system through
interaction, they became more satisfied with system output. As
such, the study demonstrated that users valued going beyond
“black box” ML and were willing and able to learn more about
a system in order to use it more effectively.

Another area in which human-AlI partnerships are being ex-
plored is interactive machine learning (IML) [1]. For example,
recent work has investigated design and evaluation of IML
systems with non-expert users [44]. Allowing users to alter
system inputs and observe how outputs change in response is
one technique for realizing model explainability [1]. Visual
analytics [39] models similarly facilitate human decision mak-
ing via model interaction. Following this principle, our model
also offers fast incremental updates to predictions, enabling
lay users to easily alter inputs via sliders and see immediate
model updates of estimated claim veracity.

Unfortunately, adoption of best practices for usability in ML
system design is not yet as widespread as one might hope [1]:

... machine-learning systems also often inherently vio-
late many existing interface design principles. For ex-
ample, research has shown that traditional interfaces that
support understandability ... and actionability . .. are gen-
erally more usable than interfaces that do not ... Many
machine-learning systems violate both principles: they
are inherently difficult for users to understand fully and
they largely limit the control given to the end user.

This motivates greater collaboration between HCI and Al re-
searchers, with both fields and their research products standing
to benefit. HCI researchers have similarly endorsed the value
for HCI to better understand and engage with AI [9, 17].

USER EXPERIENCE

This section describes the user experience we seek to cultivate
with our mixed-initiative design. The main goal for our user
interface is to realize transparency, in that users can under-
stand how the system makes its predictions and thereby know
when (and when not) to trust them. Below we discuss how we
present our model outputs to users, including its final disposi-
tion regarding claim veracities and intermediate estimates of
each article stance and source reliability.

User interactions with our system proceed as follows. The
user first enters a claim (or selects an example claim, e.g.,
“Saudi Arabia has a new law that can force women to cover
up their tempting eyes"). A list of articles relevant to this
claim is then retrieved (along with the source of each article,
i.e., the website where the article was published). Based on
these articles, a prediction is made and presented to the user
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Figure 1: Top: the main results page, which includes the claim, its predicted correctness, and a table of relevant articles, their
sources and inferred reputations and stances. Bottom left: sources link to pages that allow users to see the articles in our training
set, which enables them to see why it has a particular predicted reputation. Bottom right: each headline links to the original article.

regarding the correctness of the claim; for example the model
may be 80% confident that the claim is frue.

Figure 1 shows a screenshot of the main results page for the
example claim above. We display the claim and the system
prediction regarding its correctness at the top. The interface
emphasizes the textual evidence and reasoning underlying the
overall claim estimate. In particular, we present a table of
retrieved articles relevant to the claim, including the sources,
headlines, and two predictions: the reputation of each source
and the stance of each article headline. Each prediction is
shown as a slider: reputation ranges between {low, unknown,
high}, while stance ranges from {deny, neutral, support}.

A key feature of our interface is that users can change (over-
ride) the reputations and stances (inferred by the model) by
moving the sliders. They can then observe how the prediction
regarding overall claim veracity is affected. For example, for
a headline associated with an article published by a reputable
source, changing its stance from support to deny will tend to
increase the chance that the claim is false. This interactive
feature is beneficial in three ways. 1) It increases transparency:
users can see how model predictions about each relevant ar-
ticle contribute toward the overall veracity prediction for the
claim. 2) Users can access a more personalized prediction, for
example by lowering the reputations of sources they believe
are not credible. 3) They can correct the system’s incorrect
predictions, e.g., by changing predicted stances.

To further aid transparency, each headline is linked to the orig-
inal article, allowing users to easily browse each article to see
the textual evidence and assess the model’s stance prediction.
In addition, we generate a page for each source, and each
occurrence of the source on a claim page is linked back to
the source’s generated page. When a user sees, for a given
claim, that a relevant article comes from a particular source
with a given prediction reputation, the user can consult the
generated source page to learn more about the source and its
predicted reputation. The source page lists all articles from
that source in our training data, the claim associated with each
article, the journalist-annotated article stance, and the journal-
ist annotation for the claim’s veracity. As before, users may
click on each article to verify the stance label for themselves.
By consulting the source page and seeing the various infor-
mation about it, the user can thereby better understand the
model’s predicted reputation for the source: the more false
claims supported by a source, the lower its reputation.

PREDICTION MODELS

In this section, we describe the predictive models underlying
the above user experience. Our system’s automated predictions
are based on two machine learning classifiers: one for article
stance, and one for claim veracity [34, 32]. Both classifiers
are trained on the Emergent dataset [13], which contains 300
claims with 2595 relevant articles (on average there are 8.65
articles per claim). Each claim is labeled as false, true, or
unknown. Article headlines are labeled by journalists as being
either supporting, neutral, or refuting the claim.



Number | Claim

| Veracity

1 Tiger Woods is serving a suspension from the PGA Tour after failing a drug test | False
2 There is a case of Ebola in Kansas City False
3 The police officer leading the Charlie Hebdo investigation committed suicide False
4 A 5-year-old boy was invoiced for missing a birthday party True
5 The Indian government fired an employee who hadn’t been to work in 24 years | True

Table 1: Five claims that we randomly selected for our user study from the test set of the Emergent dataset (excluding the attention
check claim). Each claim is linked to the original Emergent’s webpage showing the relevant articles and their stances.

The stance classifier accepts the claim and an article headline
to predict the stance of the headline with respect to the claim.
The veracity classifier operates over the outputs of the stance
classifier for all of the relevant articles (and corresponding
sources), yielding a prediction concerning the veracity of the
claim. This veracity classifier explicitly models the reputation
of each source. Sources that support true claims and deny false
claims (in the training dataset) are given higher weights (i.e.,
more trusted). Both classifiers (stance and veracity) have an
average accuracy of approximately 70%.

For inference and learning, we first train the stance classifier,
then use its outputs to train the veracity classifier. For the
stance classifier, we use the same text features as in [13], in-
cluding bag-of-words (common n-grams), dependency parse,
and paraphrase alignment (word embeddings are not used
due to the reported negative impact). Each logistic regression
classifer is implemented using Scikit-learn [33] with L1 regu-
larization, Liblinear solver [12] and default parameters. While
prior work has used joint training of the two classifiers in a
graphical model framework [34, 32], we favor simplicity and
speed to facilitate real-time user interaction.

The underlying model architecture of predicting article stances
and using these predictions to estimate veracity is designed
to improve transparency. While others have considered alter-
native architectures, for example deep neural networks [50],
these can achieve good predictive performance but are less
transparent, and so less amenable to interaction and supporting
decision making. In contrast, we prioritize transparency over
raw predictive performance. In particular, we rely on linear
models in which individual terms have well-defined seman-
tics, and we adopt a Bayesian view so that users may express
subjective beliefs as priors imposed over these variables. We
operationalize this via a graphical user interface design.

USER STUDY

We conduct three experiments with participants from Amazon
Mechanical Turk (MTurk). We required participants to have
completed 1000 approved tasks with at least 95% approval
rate. Participants were allowed to partake in only one of our
experiments. The task takes less than 10 minutes on average
and we paid $1.25, for roughly $7.50 per hour. While we
did not collect participant demographics, because we post
our task in small batches throughout the day, our participant
demographics likely follow the general MTurk demographics
reported in prior work [7, 38, 20]: mostly from the US or India,
balanced gender, and younger than the working population.

In all experiments, participants predict the correctness of five
randomly selected claims (Table 1) from the Emergent [13]
test set. Note that our machine learning models have not seen
any of these claims or the associated relevant articles.

An additional (sixth) claim served as an attention check (AC)
[30]: a headline instructing participants to select a particular
answer (e.g., “If you read this headline please select neutral”).
While this AC was designed to filter out participants who did
not pay attention to the task, we observed that many partici-
pants failing this check appeared to have honestly completed
the task (e.g. many have accurate answers and helpful com-
ments). We thus decided not to filter out any participants.

Experiment 1
This experiment tests whether system predictions help humans
predict claim veracity more accurately.

Procedure: Participants are randomly assigned to one of two
groups, Control and System. In both groups, users are first
shown a screenshot of our results page (similar to Figure 1),
but without the claim veracity prediction. In group Control,
users are shown only the sources and headlines of relevant
articles. In group System, they are also shown the source rep-
utations and predicted article stances inferred by our system.
The task for both groups is to evaluate the claim correctness,
using a a Likert scale: Definitely false, Probably false, Neu-
tral, Probably true, and Definitely true. After making this
assessment, participants in both groups are shown the model’s
prediction concerning claim correctness and given the option
to change their assessment. After completing this exercise for
all claims, participants complete a short survey.

Results: We collected results for 113 participants (58 assigned
to Control, 55 to System). We measure error by calculating
the distance from the participants’ responses to the correct
answers. For example, for a (definitely) false claim, an as-
sessment of Probably false corresponds to an error of 1, and
Definitely true corresponds to an error of 4.

In Figure 2, we plot average errors over participants for each
of the five claims, with the standard deviation displayed to
characterize variance. On the left (sub-figure a), we show
the error before the participants see the system’s prediction.
Firstly, we observe mixed differences across the two groups
and five claims. Participants in group System were seen to
show higher average prediction error on claims 1 and 2 and
lower error on claim 4, while claims 3 and 5 show only small
differences between the two groups.
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Figure 2: Experiment 1. Control group participants see a list of relevant articles with sources, while those in the System group see
the same list along with predicted stances and reputations. Left: the errors of the stance classifier and of the participants before
they see the overall veracity prediction. Right: the errors of the claim veracity classifier and the change in the participants’ errors
after being shown these predictions (a positive change means that human error increases).

Secondly, we observe variable accuracy of the automatic
stance classifier. On claims 1 and 2, the stance classifier
predicts the wrong answers for 80% and 90% of the relevant
articles. Its error is 30% on claim 3 and 0% on claims 4 and
5. While average stance classifier accuracy is over 70%, this
accuracy distributes unevenly across claims, with very low
accuracy on two out of our five randomly selected claims.

For example, in inspecting the stance classifier on claim 1,
we found a probable reason for its weak performance on this
claim. This is an incorrect statement about Tiger Woods, a
claim that is denied by many of the relevant articles. However,
the stance classifier incorrectly predicts these articles’ stances
as being supportive. In the training set there are many articles
about Tiger Woods that support a different (unrelated) claim.
The classifier has incorrectly learned that the bi-gram ‘Tiger
Woods’ indicates that the article is supportive. While a more
sophisticated classifier might avoid this particular error, in
general we should expect our Al systems to be imperfect.

Thirdly, we note the pattern of human error appears to roughly
follow the system’s stance classifier errors. It seems that when
the stance classifier is wrong, participants are often misled
by it, but when it is correct, it improves their predictions.
This may suggest participants were overly trusting of our Al
While this is seemingly at odds with prior findings of users not
trusting popular fact-checking services [4], it may stem from
differences in participant demographics, participant incentives,
or other factors of experimental design. For example, users
in our study need to make predictions, instead of just saying

whether they trust the fact-checking results. We return to this
issue later in discussing study limitations.

In Figure 2 (sub-figure b), we also plot the change in human
error vs. claim after the participants saw our claim correct-
ness prediction (a positive change means that human error
increases). We observe that there are larger changes for errors
made by participants in group Control: those who have not
seen our stance predictions change their answers more than
those who have. These response changes increase the error
for some claims (e.g. claim 3), and decrease it for others (e.g.
claim 4). This roughly corresponds to the errors by the verac-
ity classifier, showing again that system predictions can both
help users (when correct) or lead users to errors that reflect
model fallibility or biases implicit in training data.

To quantify our results, we fit two Generalized Linear Models
(GLMs): one for the data before participants see our system’s
correctness prediction, one after. We modeled human error
as an ordinal response predicted by claim and participant as
random effects, and the number of correct/wrong stance pre-
dictions by our system as fixed effects. Specifically, we use the
clmm function of the R package ordinal [5] with the formula:

Human.Error ~ 1 +CSP+WSP+ (1|Claim) + (1|Participant)

where ‘CSP’ is the number of correct stance predictions that
the human participant sees. It is O for all group Control par-
ticipants who did not see any stance predictions. For group
System, it is equal to the number of correct stance predictions
for the claim. For example in claim 1, where the stance clas-
sifier is correct for 2 out of 10 articles, ‘CSP’ is 2 and “WSP’



is 8 (WSP is similarly defined as the number of wrong stance
predictions the participant sees). Also in the formula, the no-
tation ‘(1/Claim)’ means that Claim is a random effect and
an intercept is estimated for each claim. For the data before
seeing the correctness predictions, the results for the fixed
effects are:

Coefficient \ Estimate SE p-value (two-tailed)
CSP -0.053 0.029 0.064
WSP 0.076 0.031 0.014

these suggest that seeing correct stance predictions (CSP) de-
creases human error while seeing wrong predictions (WSP)
increases human error by a larger amount. Although the p-
value for CSP is slightly larger than the 0.05 significant level,
we consider that a solid evidence (the p-value is two-tail and
includes the unlikely possibility that seeing correct stance pre-
dictions increases human error). After seeing the correctness
prediction, the results are:

Coefficient \ Estimate SE p-value (two-tailed)
CSP -0.016 0.029 0.523
WSP 0.063 0.031 0.040

We can observe that seeing correct stances is now not as help-
ful because the participants can see the correctness prediction:
in claim 4 and 5, many participants are able to lower their
errors (Figure 2b). But seeing wrong stances is still harmful
because these wrong stances cause the correctness classifier to
make predictions with high errors (claim 1 and 2).

Experiment 2

This experiment assesses whether participants are able to inter-
act with the system to inject their own knowledge, fix model
predictions, and improve their own predictions.

Procedure: Whereas participants in Experiment 1 were shown
only static screenshots, participants in Experiment 2 use our in-
teractive interface. Participants were randomly assigned to two
groups, Control and Slider. In the interface for group Control,
all predictions (reputations, stances, and claim correctness) are
fixed. However, those in the latter group (Slider) could change
the (initially inferred) reputations and predicted stances, using
the sliders, and observe how the prediction regarding overall
claim correctness changes in response.

To encourage more attentive responses, we designed the task
in this experiment as a simple game in which participants
predict the correctness of a given claim (false or true) and
indicate their confidence (0%, 5%, ..., 100%) in this response.
Participants win points for correct answers, and lose points
for incorrect answers. The number of points won or lost is
proportional to their stated confidence. Participants may win
up to 20 points on a given question; these are scaled linearly
with the given confidence. For instance, a correct answer
associated with a 75% confidence wins 20x75%=15 points
(Figure 3). After a participant submits their prediction for a
claim, we reveal the correct answer and the number of points
that he or she has won or lost (for example "the correct answer
is false, you have won 15 points"). The participant can then
move to the next claim. After finishing the task for our selected
claims, the participants have the option to continue working

Do you think the claim is false or true?
Enter your prediction:

O False True

Your confidence on your prediction:

You currently have 0 points.

Your prediction is False with 75% confidence.
If the correct answer is False, you will get 15 points.
If the correct answer is True, you will lose 15 points.

The correct answer is False.
You have won 15 points.

Next

Figure 3: Top: In our gamified task interface, participants
enter their prediction on the correctness of the claim and their
confidence on the prediction. They win or lose points based
on whether their prediction matches the correct answer. The
number of points is 20 x confidence (20x75%=15). Bottom:
after submitting, participants will see the correct answer.

on other claims in the datasets, but this is not required. We
hypothesized that participants who could see the consequence
of their predictions in winning or losing game points may be
more engaged and therefore make better predictions.

Results: We collected results for 109 participants (51 assigned
to Control, 58 to Slider). In Figure 4, we show the distribution
of the participants’ points as a boxplot, for each claim and
condition. For claims 1-3, where the system is less accurate,
participants in the Slider group (i.e., those able to use the
slider-change feature) earn more points on average (assess
veracity more accurately and/or confidently). For claims 4 and
5, where the system prediction is already accurate, boxplots
reveal the Slider group participants have lower first quartiles,
although the medians are still roughly the same. This suggests
that some group-Slider participants are negatively impacted
by the slider interface.

Within the 58 group-Slider participants, the sliders are used
by 79% of the participants on claim 1, 59% on claim 2, and
roughly 45% on claims 3, 4, 5. This decrease in use may
be due to the variable error of the automatic stance classifier,
or may reflect a familiarization effect as participants become
accustomed to using the sliders.

We find no evidence of any difference in points between those
who used the sliders and those who did not (p-value > 0.5
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Figure 4: Experiment 2: boxplots of points earned for each
claim in the two groups. In group Control participants cannot
change the predicted stances and reputations; in group Slider
they can. The diamonds indicate detected outliers (more than
1.5 Inter-Quartile-Range from the first or third quartile).

for all tests). This seems contradictory for claim 2, where we
observe that group-Slider performs better than group-Control
by a reasonable amount. If there is no difference between
those who use the sliders and those did not, why was group
Slider better for that claim? One possible explanation is that in
claim 1, the Slider-group participants have learned to question
the model (and not to blindly trust its predictions) so that
they made better predictions on claim 2 (compared to group-
Control), even for those who did not use sliders on claim 2.
Although we have informed the participants (in both groups
Control and Slider) in our task instruction that the model is
only 70% correct, being able to experience the uncertainty
in the model’s predictions may help participants see the true
quality of the model (by using the sliders and seeing how the
predictions change).

Our GLM model for this experiment simply use the group
assignment as the fixed effect:

Points ~ 1+ Group + (1|Claim) + (1|Participant)

where ‘Points’ is treated as a continuous response. Using the
function Imer in the package Ime4 [3] and the tests in the
package ImerTest [29], we have:

Coefficient | Estimate  Std. Err  2-tail p-value
Group Slider | 1.721 1.232 0.166

We also fit the same model after removing the outliers (the
diamonds in Figure 4) and find roughly the same estimate,
with the p-value drops slightly to 0.122. The results suggests
that participants in group Slider have higher points, although
this is not significant at the 0.05 level. We believe that this
relatively weak statistical signal is due to several reasons. First,
there are large variances in human performance across claims
and participants. Second, as discussed above, the sliders are

not helpful (and sometimes even harmful) when the model is
already correct. Third, the sliders were not used by as many
participants as we expected. Finally, although the sliders are
intended to be intuitive, they may require familiarization and a
learning curve, and ultimately be found clearer to some users
than others.

Experiment 3
This experiment investigates the degree to which ‘gamified’
aspects of Experiment 2 impact participant performance.

Procedure: We compare performance of two groups (to which
participants were again randomly assigned). Both groups
assess claim correctness and indicate confidence in this assess-
ment. In the first group (Control) participants perform the task
without the game (and so are not shown a number of ‘points’
they currently have or will get). In the second group (Game)
participants complete the ‘gamified’ variant of the task.

Results: Across 106 participants (56 assigned to condition
E, 50 to F), we find no significant differences between two
groups in the number of points or number of extra tasks done
(p-value > 0.5 for both). Consequently, we find that the game
design did not impact participant performance (wrt. predictive
performance or engagement) as hypothesized.

Survey Responses
In our post-task surveys across experiments, participants were
generally positive about our tool, for example:

“I thought it was really cool! I’d enjoy playing with
this more if it wasn’t during my work time."

Some participants expressed concern about the amount of
information, the slider-change feature, and the correctness
‘true’ judgment (by the Emergent journalists).

“there’s a lot of data in this hit but not enough money
to make it worth exploring"

“Do not give me the option to tweak the deny, neu-
tral, support rating as it led to some confusion regarding
the task, however I was able to understand it once very
quickly with practice."

“It was very hard to understand. It seems on one task,
I was 100% sure it was true and I was told it was false, I
even followed links to verify the sources."

This first participant appears to be overwhelmed with the com-
plexity of the fact-checking work, which is understandable.
The second is not receptive to our slider-change feature, but
also acknowledges that it became useful after some practice.
The last participant seems to refer to claim 3, which no arti-
cles deny, but which the Emergent’s journalists deemed false
due to the reported event being exaggerated. This shows that
fact-checking can be very difficult, and that many subtleties
are lost by dichotomizing claims as either true or false.

DISCUSSION

We have presented a prototype system that enables users to
interact with ML predictions for the challenging task of fact-
checking (assessing claim validity). We designed the interface



so that users can know where the predictions are coming from.
In some variants we allowed users to optionally override these
predictions with their own beliefs or inferences. While our
findings show that this human-AlI interaction can be effective,
they also suggest that caution should be exercised. Fallible ML
models may make seriously wrong predictions (due to spurious
correlations gleaned from potentially imperfect training data)
that can in turn mislead users in some cases.

Limitations. This study presents what we believe to be in-
triguing results, but we note several important limitations.
Firstly, our results in Experiment 2 are not significant at the
0.05 level, as we discuss, and should be interpreted with cau-
tion. Secondly, we have relied on MTurk participants, and
different participant demographics or incentives may influ-
ence findings. For example, international MTurk workers may
not be most representative of American news consumers or
the most familiar and interested in American news. Thirdly,
alternative plausible interpretations of the results exist. For
instance, since MTurk workers are paid per task (rather than
hourly), some workers may echo model predictions not due to
trust but rather simple expediency of work. We acknowledge
that possibility, though inspection of the data suggests such
behavior only forms a small minority of what we observe.

It is also important to recognize that our work has the po-
tential for negative impact as well. When the model makes
errors, people may not recognize them, or could be even more
confused by the introduction of AI modeling into an already
confusing landscape of questionable sources and facts. While
sliders support human-Al joint reasoning and allow users to
correct modeling errors, they also create a new opportunity for
self-constructed echo chambers, where correct model outputs
can be manipulated at the whim of user bias. Were such “cor-
rections” shared, one can easily imagine an adversarial setting
where groups with competing interests seek to manipulate
fact checking tools alongside their existing processes. Future
work could consider designs to help users further recognize
system limitations, interpret predictions with more caution,
and explore the limits of their own knowledge and biases. For
example, an interface could state the model’s assumptions
more clearly and ask users to confirm their understanding be-
fore they can see the predictions. Exploration of adversarial
settings is also important to enable effective collaboration.

Our experiments include only claims for which we have
elected to trust a "reference" veracity designation (by the
Emergent journalists), and each has here been associated with
a fixed set of relevant articles. As highlighted by the recent
growth of work on algorithmic bias, our system learns only
from the data it is given, with its accuracy and bias ultimately
determined by that of the underlying data. An interesting di-
rection for future work is to design for users to check their
own claims, using relevant articles they find, and interact with
other users’ predictions.

In light of deeply divided views in political discourse and an
increasingly ill-defined notion of ‘truth’, an assistive tool such
as the one we present offers intriguing potential for brokering
a more rational process in formulating individual beliefs and
structuring debate among disagreeing parties [41]. If we can

agree on the basic information literacy process to follow in
assessing claims, and if we provide a structured process by
which differing viewpoints can be precisely articulated and
injected as prior knowledge into an automated system’s reason-
ing process, perhaps we can create a space for more reasoned
discourse. Instead of simply debating claims, two people with
disagreeing views might sit down together and employ such
a tool as a technological mediator. By alternatively injecting
one another’s viewpoints and beliefs as prior knowledge into
the tool’s reasoning process, we might come to more clearly
understand the key evidence on which our beliefs disagree,
and in so doing, gain additional insights into both our own
beliefs as well of those who disagree with us.
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