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ABSTRACT
Aggregation models for improving the quality of annotations
collected via crowdsourcing have been widely studied, but
far less has been done to explain why annotators make the
mistakes that they do. To this end, we propose a joint ag-
gregation and worker clustering model that detects patterns
underlying crowd worker labels to characterize varieties of
labeling errors. We evaluate our approach on a Named Entity
Recognition dataset labeled by Mechanical Turk workers in
both a retrospective experiment and a small human study.
The former shows that our joint model improves the quality
of clusters vs. aggregation followed by clustering. Results of
the latter suggest that clusters aid human sense-making in in-
terpreting worker labels and predicting worker mistakes. By
enabling better explanation of annotator mistakes, our model
creates a new opportunity to help Requesters improve task
instructions and to help crowd annotators learn from their
mistakes. Source code, data, and supplementary material is
shared online.
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Cluster Words
1 A.S. Corp. E. El-Watan F.C. German-led

O’Donnell S&P S

2 BME BNP CNIEC ETA FRENCH GMT IBCA
LAKES LG LME MIT

3 Adrian African Albanian Anatolian Australian
Canadian Chinese Classic Egyptian European
French Israeli Japanese Korean Palestinian Pascal
Peruvian Pivotal Portuguese

Table 1: Three clusters of the words that a worker
missed in the Named Entity Recognition task. The
first contains words with punctuation; the second in-
cludes all-capital words; the last (and largest) cluster
containsmostly nationalities. Ourmethod aims to dis-
cover these clusters while aggregating labels to ex-
plain why workers made mistakes.

https://doi.org/10.1145/3301275.3302276

1 INTRODUCTION
Crowdsourcing has emerged as a standard mechanism for
distributing work (such as dataset annotation) at modest to
low cost. However, ensuring data quality with crowdsourcing
remains a significant challenge, especially on paid microtask
platforms such as Mechanical Turk, which provide access to
inexpert, remote, and unknown annotators via rudimentary
communication channels and limited opportunities for train-
ing. The annotation process is largely opaque, with only the
final labels being observed.
Prior work has aimed to improve the quality of crowd-

sourced data. Machine learning approaches have often as-
sumed annotator labels are fixed and focused on modeling
annotator reliabilities for better aggregation [2, 3, 14, 18].
In contrast, human-centered approaches have sought to im-
prove the quality of annotator work by improving the task
design [1, 7, 15, 19], or recording and visualizing worker
behavior [12, 13].
Bridging these largely disparate approaches, we extend

the classical Dawid & Skene (DS) aggregation model [2] –
trained via Expectation Maximization (EM) – with instance
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clustering to automatically detect patterns of annotator er-
rors. Such a model could be used to help task designers
identify confusing questions [16] and better understand the
kinds of mistakes annotators make [12], or to help workers
better understand and learn from their own mistakes [6].
At present, Requesters typically evaluate crowd annota-

tors based on simple statistics such as accuracy, with respect
to either a small number of ‘gold’ annotations or aggregated
labels. However, workers may have encountered difficult or
ambiguous cases, or had a genuine misunderstanding which
the Requester could have rectified if only that misunderstand-
ing had been detected. Our joint aggregation and clustering
model improves upon this status quo by summarizing the
labels provided by each worker, emphasizing explainability
rather than aggregation accuracy.

We focus on Named Entity Recognition (NER), the task of
identifying named entities such as people names, locations,
or organizations in text. For instance, given the sentence
‘Ashwin Ram will give a keynote talk at ACM IUI in Los
Angeles’, the task for the worker is to annotate ‘Ashwin Ram’
as a person, ‘ACM’ as an organization, and ‘Los Angeles’ as
a location. The detected named entities are useful for many
downstream tasks such as question answering or translation.
In Table 1, we show three clusters of mistakes made by a
worker in the NER task. Ourmodel identified that this worker
tends tomiss nationality words as well as some acronyms and
words containing punctuation. Discovering such patterns
may help a Requester revise task instructions and/or send
tailored feedback to the worker.

A User Interface (UI) for Requesters may show the clusters
similar to Table 1. The UI may also include information such
as the context where each word appears, the properties of
each cluster, and the estimated accuracy of the worker.
To evaluate our approach, we first perform a retrospec-

tive (simulation) experiment showing that our joint model
improves the quality of clusters vs. separate aggregation and
clustering. We also report a human experiment whose results
suggest that the discovered clusters aid human sense-making
in interpreting worker labels and predicting future mistakes,
compared to a simple list of annotations.
To the best of our knowledge, this is the first work to

propose an explainable model for detecting patterns of anno-
tation errors to support sense-making. We focus on the case
of crowd annotators in the NER task. However, we note our
approach is potentially applicable to labels collected from
other annotator populations (e.g., by volunteers or gamified
crowdsourcing, student annotators, or even domain experts),
and other labeling tasks where features are available for clus-
tering. Our source code, data, and supplementary material
are available online1.

1http://github.com/thanhan/explainable-crowd-iui19

2 METHOD
EM is typically used to estimate the parameters of the DS ag-
gregation model [2]. This works by iterating between Expec-
tation (E-step) and Maximization (M-step) steps until conver-
gence. The E-step estimates the true label for each instance,
while the M-step estimates the quality of each worker’s la-
bels (represented by a ‘confusion matrix’). Given true label
estimates, instances can be grouped into four ‘confusion cat-
egories‘ (assuming binary labels): True Positive (TP), True
Negative (TN), False Positive (FP), and False Negative (FN).
The key idea behind our method is to perform clustering
on each of these four groups. The naive approach (which
we will use as a baseline) is to perform the clustering after
aggregating labels. However, this approach assumes that the
aggregated labels are perfect, ignoring label uncertainty.
To improve upon this baseline, we propose integrating

the clustering model into the DS aggregation model [2], and
we derive a new EM algorithm for model training. Our inte-
grated joint model enables aggregation and clustering com-
ponents to share true label estimates and detected labeling
patterns, thus allowing the former to reflect the uncertainty
in the latter.

Model
We depict our full graphical model and provide a list of
notation in Figure 1. We first review the DS aggregation
model [2]. Let Ti be the true (unobserved) label for instance
i; li j the crowd label for instance i provided by worker j;
andMj the confusion matrix for worker j. For binary labels
(Ti ∈ {0, 1}), each confusion matrix is 2 × 2, and the entry at
row x , column y (Mj [x ,y]) is the probability that worker j
provides label y for an instance with true label x :

p(li j | Ti ,Mj ) = Mj [Ti , li j ] (1)

We next define the clustering model. Let ci j be the confu-
sion category for the crowd label li j . Again assuming binary
data, ci j assumes one of four values: TP, TN, FP, or FN. La-
bels provided by worker j can then be partitioned into these
four groups. We then cluster the instances in each group to
discover the worker labeling patterns. Thus, there are four
clustering models for each worker. We denote the parame-
ters of the clustering models associated with worker j by bj ;
model parameters are then indexed by the confusion cate-
gory ci j and the cluster ID zi j ∈ 1...k , where k is the number
of clusters. k can be set using information criteria [8] or
heuristic metrics such as the silhouette coefficient [11]. How-
ever, since we use a small dataset and expect a small number
of clusters, we set k = 3 for simplicity.

Finally, letting fi be the features for instance i andD be the
number of features, we assume that the features are binary

http://github.com/thanhan/explainable-crowd-iui19
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Ti

lijcij Mj

fi zij

bjcz

instance i ∈ 1..n

worker j ∈ 1..mc ∈ 1..4, z ∈ 1..k

Symbol Description

Ti true label for instance i
li j crowd worker j label for instance i
Mj confusion matrix for worker j

ci j confusion category (TP, TN, FP, FN)
fi features (binary, D dimensions)
zi j cluster ID
bjc cluster parameters

Figure 1: Top: our graphical model. Bottom: the symbols we
use and their description. The first three rows are the Dawid
& Skene (DS) aggregationmodel parameters. The remaining
refer to our clustering model.

and are generated independently (given the parameters):

p(fi | ci j , zi j , bj ) = p(fi | bj [ci j , zi j ]) (2)

=

D∏
d=1

Ber(fi [d] | bj [ci j , zi j ,d]) (3)

Where Ber is the probability mass function of the Bernoulli
distribution: Ber(x | p) = px (1 − p)1−x . As an example, con-
sider four binary word features: (1) is capitalized, (2) has
punctuation, (3) is noun, and, (4) is adjective.

Table 2 shows the cluster parameters for a hypothetical
worker in the FN confusion category (FN in the NER task
indicates word that is a named entity but which the worker
has missed). We see that cluster 1 includes words that have
punctuation and nothing else, while cluster 2 includes capi-
talized words and nothing else. In cluster 3, we expect 10%

of the words to be capitalized, 10% to have punctuation, 10%
to be nouns, and 90% to be adjectives.

Confusion Cat. c Cluster ID z Cluster parameter b

FN 1
[
0.0 1.0 0.0 0.0

]
FN 2

[
1.0 0.0 0.0 0.0

]
FN 3

[
0.1 0.1 0.1 0.9

]
... ... ...

Table 2: Cluster parameters for a hypothetical worker
in the False Negative confusion category. The full ta-
ble would include rows for other confusion categories.

Inference and Learning
We extend the DS model [2], adapting the original EM al-
gorithm [4] for estimation and inference. In the E-step, we
perform inference to find the posterior over hidden variables
Ti and zi j . In the M-step, we optimize parameters Mj and bj
under the expectation found in the last E-step. These two
steps are performed iteratively until convergence.

E-step (Inference): Given observed data (li j , fi ), and
model parameters, the inference problem of calculatingp(Ti , zi j |
li j , fi ,M, b) is computationally difficult. We thus resort to ap-
proximate inference via Gibbs sampling [5], wherein each
variable is sampled conditioned on all others:

p(Ti | ...) =
∏
j

p(li j | Ti ,Mj )p(fi j | ci j , zi j , bj )

p(zi j | ...) = p(fi j | ci j , zi j , bj )

where ‘...’ denotes all other variables and the product
∏

j is
over all workers labeling instance i .
M-step: Given the Gibbs samples, the categorical param-
eters Mj and worker-specific Bernoulli parameters bj can
be optimized via Maximum Likelihood Estimation (MLE),
which here entails simple counting. Specifically, the confu-
sion matrix entry Mj [x ,y] is proportional to the number of
times (over all instances and all Gibbs samples) that the true
label is x while the worker j provided label y. The cluster
parameter bjcz [d] is proportional to the number of times
that feature d is present in an instance labeled by worker j
such that: (1) the instance/label pair is in confusion category
c , and; (2) the instance is assigned to cluster z.

3 EVALUATION
Cluster quality experiment
Our method discovers worker annotation patterns by clus-
tering the instances with respect to the predicted true labels.
Our first experiment measures the extent to which the clus-
ters we discover are consistent with the clusters we would
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Baseline Proposed
First 1000 words 91.2 92.6
First 10000 words 86.1 88.0
All words 85.3 87.6

Table 3: Results of the computational experiment; we
report F1 scores using different amounts of data.

find if we knew the ground truth gold labels. We partition
each worker’s labels into TP/TN/FP/FN based on gold la-
bels, then perform clustering (using the proposed mixture of
Bernoulli’s model) within each set. Because each run of the
stochastic clustering method yields slightly different clusters,
we generate clusters 100 times and report average results
over the 100 trials. In each trial, we compute the Rand index
[9] in which two instances belonging to the same cluster
are considered positive, while those in different clusters are
considered negative. Standard binary classification metrics
can then be reported over pairs of worker labels: does a given
pair assigned to the same cluster induced via gold labels also
belong to the same cluster when clusters are estimated via
our joint model?

Data: We use the CoNLL NER dataset [17] with crowd
labels collected by Rodrigues et al. [10] for 37660 words. We
treat the original annotations as reference or ‘gold’ anno-
tations. We use standard NER word features with no pre-
processing: capitalization, Part-or-Speech tags, numbers and
punctuation. We also simplify the NER output space into a
binary classification problem: words are either part of an
entity (1) or not (0).
Baseline: We use DS aggregation [2] to estimate true labels
to infer groupings and cluster within these. As noted above,
this baseline ignores the inherent uncertainty in the aggre-
gated labels. That is, the model will treat words inferred to be
negative (non-entities) with 51% certainty equivalently to to-
kens inferred to be negative with ∼100% certainty.Discarding
this uncertainty will likely yield noisy clusters.
Results: In Table 3, we present F1 scores comparing our
proposed model to the baseline, averaged over 100 gold clus-
ters. Our first observation is that the F1 scores decrease with
more data, likely because larger clusters are harder to predict.
The proposed method improves over the baseline, and the
improvement is larger with larger data — for example we
observe an absolute increase of more than 2 F1 points in the
full dataset. We also performed three paired t-tests on the dif-
ferences between our method and the baseline (one for each
row in Table 3) and found that these differences are statisti-
cally significant: First 1000 words: t(99)=3.182, p<0.002, First
10000 words: t(99)=11.537, p<0.0001, All words: t(99)=19.261,
p<0.0001.

Human sense-making experiment
Wenext report a human experiment to evaluate our approach
in practice. To assess the degree to which the discovered clus-
ters are useful in helping individuals (“users" who function
as stand-ins for Requesters) understand when and why work-
ers make mistakes, we ran a task on Mechanical Turk. To
avoid ambiguity, we refer to those who worked on our task
as “users”, and those who worked on the original NER task
[10] as “workers”.

Users were randomly assigned to one of two groups: List
and Cluster. The difference between the two groups is:
(1) The List group is shown a list of 12 randomly-selected

instances correctly annotated by the worker, and 12
that the worker annotated incorrectly (we simplify
four confusion categories into just correct and incor-
rect).

(2) The Cluster group is shown 3 clusters of instances that
the worker was correct on, and 3 clusters of instances
on which they made mistakes. Each cluster c is repre-
sented by 4 instances randomly selected from c , its size
in number of instances, and a list of majority features
for c (that appear in more than 50% instances).

Users in both groups then answer five questions. Each
question comprises a pair of instances; one that the given
worker provided a correct annotation for, and one with an
incorrect annotation. Users are tasked with predicting which
of these the worker made a mistake on. They also have the
option to say “I can’t tell” if a pair is too difficult. An instance
is presented as a sentence with the named entity in bold.
Users are advised to spend 5 minutes on the task and are
paid $0.50 each. Screen-shots for the task are available in our
supplementary material.

Preliminary experiments suggested that this task was very
difficult for users. To ease this difficulty, we used a Logistic
Regression (LR) classifier to predict the “easiest” questions
for the “easiest” workers. The classifier is trained to predict
the correctness of each worker’s labels (i.e., to do the task),
with the NER features enumerated above. The “easiest” ques-
tions are those the LR classifier is most certain. The “easiest”
workers are those that the LR classifier achieved the highest
accuracy on. Our final data for this experiment contains 8
“easiest” workers and 5 “easiest” questions each.

We collected 1335 answers from 111 users and found that
the average accuracy of the List group is 51.8%, while the
average accuracy of the Cluster group is higher at 61.6%. In
calculating these accuracies, a “I can’t tell" answer is con-
sidered a wrong answer (awarding partial credit for this
answer produces similar results). In Figure 2, we further
show the accuracies with respect to the number of users’
answers. The general observation is that the cluster group
has better performance. To assess the statistical significance
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Figure 2: Accuracy vs. the number of answers given by each
user. Bernoulli 95% confidence intervals over all answers in
each group are reported.

of this difference, we fit a Generalized Linear Model (GLM)
where the dependent variable was the label correctness (i.e.,
whether the user was able to guess correctly which instance
the worker annotated correctly). The fixed effect was the
group and the random effect was the user (there is a pa-
rameter for the group and for each user in the model). We
find that the parameter for group is non-zero (p-value 0.0417,
meaning the difference between the list group and the cluster
group is significant at the 0.05 level).

4 DISCUSSION

Limitations
This work is a first step towards more explainable crowd-
sourcing models, which have the potential to benefit both
Requesters and workers. We note several important limi-
tations. First, our human experiment is a difficult task for
Mechanical Turk workers, who need to ‘think like a Re-
quester’ for the NER task, which they are likely not familiar
with. Future work may address this using experiments with
Requesters or experiments on the workers of the original
NER task (or other appropriate tasks). Second, in our human
experiment, we resorted to considering only the “easiest”
workers and questions, which means the results may not
generalize beyond these examples. Third, some of the clus-
ters discovered by our method are hard to interpret and may
not correspond to meaningful annotation patterns. The rea-
son why workers make mistakes can be more complex than
what can be observed in the data. Future work may consider
richer annotation pattern representations.

Conclusions
Crowdsourcing has been widely used to collect labels for
datasets, but to the best of our knowledge, this is the first
work to explicitly attempt to improve the explanation of
worker mistakes, especially to inform Requesters. To achieve
this, we proposed a joint aggregation and clustering model
summarizing ‘annotation categories’ (e.g., false positives)
specific to each worker as a generative model over inter-
pretable discrete features.
We first validated that this approach improved cluster-

ing quality (using reference standard expert annotations).
Secondly, we performed a prospective sense-making experi-
ment that demonstrated that users could better predict the
instances on which particular workers might make mistakes
given the cluster output from our model. Overall, our results
suggest that models for better explaining worker mistakes
constitute a promising direction for further research.
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