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Abstract

We consider a finite-pool data categorization scenario
which requires exhaustively classifying a given set of
examples with a limited budget. We adopt a hybrid
human-machine approach which blends automatic ma-
chine learning with human labeling across a tiered
workforce composed of domain experts and crowd
workers. To effectively achieve high-accuracy labels
over the instances in the pool at minimal cost, we de-
velop a novel approach based on decision-theoretic ac-
tive learning. On the important task of biomedical ci-
tation screening for systematic reviews, results on real
data show that our method achieves consistent improve-
ments over baseline strategies. To foster further research
by others, we have made our data available online.

Introduction
We investigate finite-pool data categorization (Wallace et al.
2010a), in which the objective is to exhaustively and accu-
rately categorize a set of examples while minimizing cost.
These categorizations will be performed either manually
or using a classifier induced over the annotated examples.
Training data thus serve a dual purpose: acquired labeled
instances will be used not only to induce an accurate classi-
fication model, but also to reliably annotate some portion of
the data. Because there is no separate training data, labeling
errors are costly not only because they hamper performance
of the learned classifier, but also because they are, by defini-
tion, misclassified items.

The defining characteristic of the finite-pool scenario is
the focus on using a hybrid system – here composed of
crowd workers, experts and a classification model – to label
a specific, fixed set of instances. Thus this while a classifi-
cation model is trained to reduce labeling effort, this learned
model is not the primary output of interest. This scenario
thus differs from much of the previous work in active learn-
ing, which has sought primarily to achieve strong classifier
generalizability at low cost; in that case, misclassified train-
ing instances incur cost only insofar as they exacerbate clas-
sifier errors on unseen examples.

Crowdsourcing (Lease 2011; Lease and Alonso 2014) is
an increasingly popular approach to acquiring annotations
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at low cost, often used to subsequently train classifiers. De-
spite demonstrated utility in this respect (Snow et al. 2008),
the quality of annotations acquired from the crowd remains
a concern. This is particularly true in domains in which la-
bel quality is paramount. In practice, this often results in a
trade-off between cost and quality: one aims to make the
best possible use of pricey domain experts and to efficiently
capitalize on low-cost crowd annotations.

Active learning (Settles 2012), in which unlabeled items
are selected for labeling cleverly (rather than at random)
in an iterative and interactive process, is a natural fit for
this scenario. By intelligently selecting items to label, active
learning can economize annotator effort and realize greater
predictive accuracy at lower cost.

In this paper, we aim to select both the item to be labeled
and the expert to label it at each step in the learning pro-
cess. In particular, we extend prior work to develop a de-
cision theoretic active learning framework that jointly con-
siders querying the crowd and domain experts for labels on
examples deemed likely to be informative. Our contributions
in this work can be summarized follows:

• As far as we are aware, this is the first empirical ex-
ploration of active learning with labels from both crowd
workers and domain experts that uses real data (i.e., data
collected for a real task from both types of labelers).

• We present and evaluate a new decision theoretic ap-
proach for this task that selects the labeler type (crowd
worker or domain expert) to explicitly minimize the ex-
pected loss. Our approach is general, but here designed for
scenarios in which one class is rare and misclassification
costs are asymmetric (i.e., False Negatives are expensive).

The remainder of this paper is structured as follows. In the
next section, we discuss our motivating scenario: citation1

screening for biomedical systematic reviews. We then dis-
cuss related work to place our contributions in context. This
is followed by presentation of our method and the baseline
approaches to which we compare this to. We present our em-
pirical setup and results in the subsequent section, and end
with a discussion of future work.

1Citation here refers to paper abstracts and associated meta-data
such as titles, author information and keywords.



Motivating Application: Biomedical
Systematic Reviews

Evidence-based medicine (EBM) aims to inform patient care
using the entirety of the available evidence. The cornerstone
of EBM is the systematic review, in which reviewers conduct
a comprehensive synthesis of the evidence relevant to a pre-
cise clinical question, often via statistical meta-analysis of
the outcomes (Barza, Trikalinos, and Lau 2009). Systematic
reviews increasingly inform all levels of healthcare, from
bedside practice to national policy.

Unfortunately, systematic reviews are extremely labori-
ous (and hence expensive) to conduct. This problem has
been exacerbated by the exponentially increasing biomedi-
cal evidence based; researchers can no longer keep pace with
the literature (Bastian, Glasziou, and Chalmers 2010). Con-
ducting a review involves following a specific sequence of
steps that constitute a pipeline (Wallace et al. 2013b): (1)
formulating a precise clinical question to be addressed; (2)
designing a broad search strategy to retrieve all potentially
relevant citations; (3) screening these with respect to their
eligibility for inclusion in the review; (4) extracting the in-
formation of interest from the relevant (screened in) articles;
and finally, (5) statistically synthesizing this information.

Our focus in this work is on step (3) of screening poten-
tially relevant citations retrieved via a broad query. This usu-
ally involves experts (individuals trained in evidence-based
medicine; usually MDs) reading the entire set of citations
retrieved via database search to identify the small subset
of these eligible for the review. Typically, this entails ex-
perts reading thousands of citations to identify the 5% or so
deemed likely to be eligible for inclusion in the review.

This is a well defined problem where expert labels can
be reasonably assumed to be correct. In practice, very high
inter-annotator agreement of 96%-97% has been observed
(Mateen et al. 2013), and “mistakes” tend to be one-sided in
the form of False Positives.

Previous work has considered semi-automating this pro-
cess via machine learning (Wallace et al. 2010b; Cohen et al.
2006). Furthermore, active learning – in which citations are
selectively chosen for screening by an expert with the aim
of inducing a better predictive model with less effort – has
been shown to improve performance for this task (Wallace
et al. 2010a). More recently, researchers have investigated
crowdsourcing citation screening for systematic reviews via
Mechanical Turk (Mortensen et al. 2015). In general, despite
the task requiring some degree of biomedical knowledge,
it was found that crowd workers were capable of provid-
ing screening decisions that correlated reasonably well with
expert judgments at low cost. Nonetheless, these decisions
were naturally not as high-quality as those made by (expen-
sive) trained systematic reviewers.

Here we combine these lines of work by developing a sin-
gle model that intelligently queries for supervision from do-
main experts and crowd workers to use as training data. The
hope is that by so doing, one may minimize loss at lower cost
than relying on either experts or crowd workers exclusively
(or heuristically alternating between them).

There are two properties that make this aim difficult:

asymmetric misclassification costs and high cost ratios (be-
tween crowd workers and experts). The former arises be-
cause in citation screening for systematic reviews it is crucial
not to overlook relevant articles (i.e., citations that meet the
inclusion criteria), because the entire purpose of conducting
a systematic review is to be comprehensive. The latter prop-
erty (high cost ratios) is due to the specialization necessary
to provide highly accurate screening decisions. We believe
these two properties are common to many real-world learn-
ing tasks, and thus that the methods we propose here gener-
alize beyond the specific application of systematic reviews.

Related Work
Active learning is now a well-studied sub-problem (Settles
2012). In general, active learning involves selecting train-
ing data intelligently, rather than at random, to maximize
classifier performance on future examples. Many strategies
have been proposed to realize this general aim. Perhaps the
most popular of these is uncertainty sampling (Lewis and
Gale 1994), in which the expert is asked to label the (as yet
unlabeled) example about whose label the current model is
least certain. Uncertainty can be quantified in a number of
ways, depending on the underlying classification model be-
ing used. For example, if the classifier is a linear model, then
the distance to the separating decision boundary provides a
measure of certainty: one may simply select the item closest
to the current decision boundary to be labeled.

Our work is directly based on previous work on “optimal”
active learning, where the learner selects for labeling the ex-
ample that minimizes the expected loss on the test set. Cohn,
Ghahramani, and Jordan (1996) provided analytic solutions
(and thus sampling strategies) to some simple problems of
this general form. Roy and McCallum (2001) applied this
idea to text classification and took a sampling (Monte Carlo)
approach to make estimation tractable. They showed its im-
provement over classic uncertainty sampling and other base-
lines. Kapoor, Horvitz, and Basu (2007) later extended this
method to incorporate variable cost labels.

In these “optimal” approaches, the core approach is to:
(1) consider each item; (2) estimate its label; (3) add that la-
bel to the training set, (4) retrain the model and estimate the
future error (subsequent to collecting the new label). This
process is repeated for every unlabeled item, and the esti-
mated future error is weighted by the estimated probability
of that item taking the respective labels comprising the set
of classes under consideration (e.g., 0 or 1 in a binary set-
ting). This is naturally cast in a decision theoretic light: the
active learner may be viewed as an agent reasoning about
what actions it may take (which instances to request labels
for) by considering the likely states it will be in after each
possible action (the loss; typically predictive performance),
and the expected costs of different actions (costs per label).
This provides a principled, flexible framework to address the
cost-quality trade-off inherent to active learning.

The strategy of combining active learning with crowd la-
belers has also been previously investigated, with encour-
aging results. For example, Laws, Scheible, and Schütze
(2011) applied this strategy to two natural language process-
ing tasks: named entity recognition and sentiment detection.



Elsewhere, Mozafari et al. (2014) proposed a general strat-
egy for active learning using the (non-parametric) bootstrap.

Yan et al. (2011) investigated active learning from multi-
ple labelers of varying expertise but did not consider their
varying cost. Donmez and Carbonell (2008) introduced pro-
active learning, a generalization of active learning that re-
laxes unrealistic assumptions. Wallace et al. (2011) studied
active learning from multiple experts, some less experienced
than others, finding that one may rely on novice worker
meta-cognition to decide when to appeal to experts. Com-
puter vision researchers have also recently explored com-
bining crowd and expert labels (Patterson et al. 2013).

In contrast to the above works, our approach here is ex-
plicitly designed for scenarios in which one aims to use do-
main experts, crowd workers and a classifier in conjunction
to label a finite pool of examples with maximum accuracy
at minimal cost. This alters the loss function, which must
explicitly account for the costs associated with mislabeled
training examples acquired from the crowd (in addition to
errors made by the classifier). We do this by attempting to
make optimal decisions at each step in the learning process,
with respect to the expected loss, as we next describe.

Methods
Our proposed active learning approach uses a decision-
theoretic model (described next) to decide which instances
should be labeled and by whom.

Decision Theoretic Active Learning
Decision theory is a general framework for making decisions
under uncertainty, characterized by:

• A set of states S with a start state and perhaps an end state.

• A set of actions A.

• A transition function T (s, a, s′) that gives the probabili-
ties of transiting to states s′ when performing action a at
state s for all s, s′ ∈ S and a ∈ A.

• A loss function L(s) for each state to be minimized.

Given this framework, one can opt to take the actions
that minimize the expected loss, where this expectation
marginalizes over the losses of all possible states, weighted
by their respective probabilities (that is, the probabilities of
transitioning to them after performing the action under con-
sideration). Unfortunately, evaluating projected future ac-
tions (and associated expected losses) requires enumerat-
ing an exponentially large space of possible states, which
is computationally intractable. We therefore use a common
heuristic first-order approximation: we make a greedy deci-
sion that optimizes only the for expected loss in the imme-
diate next state.

Recall that our aim is to maximize the quality of the labels
(which translates to our loss) given some specified labeling
budget. We define the state s as: (1) the set of unlabeled
items; (2) the set of labels we have collected so far (from
both crowd workers and experts); and (3) the remaining bud-
get. In the start state s0, we assume all items are unlabeled
except for an initial seed set of 100 crowd-labeled items. The

end state is reached when the specified budget is exhausted.
With regard to the setA of actions, we consider two options:

1. Pick an unlabeled item and ask the crowd to label it (i.e.,
collect k crowds labels for a cost of k units).

2. Pick a crowd-labeled item and ask the expert to label it for
a cost of E units.

We do not consider bypassing the crowd (i.e., asking the
expert to label an unlabeled item) because prior work (Wal-
lace et al. 2011) has showed that always querying the lower
cost labeler first (and only subsequently deferring to the ex-
pensive expert) works well in practice. We also simplify the
action space and reasoning by requesting all 5 labels from
the crowd at once. Given the price disparity between experts
and crowd workers, the additional cost of acquiring all k
crowd labels (rather than < k) is marginal.

After performing an action, the state that we transition to
depends on the response from the labeler, which we do not
know beforehand. But we can use the predicted distributions
over potential responses, thus providing the transition func-
tion T . The loss function here is a measure of the quality of
the labels that we acquire for all items (including those la-
beled by a classifier trained on using the labels acquired so
far). For example, a simple loss function would just be the
number of misclassifications. In general, when we request
a label from the crowd, we collect multiple annotations to
mitigate noise. In this work, we simply pool these responses
using majority voting; we use this straight-forward aggrega-
tion strategy because it has been shown to be competitive
despite its simplicity (Sheshadri and Lease 2013).

Figure 1: Illustration of our approach: ‘e’ and ‘c’ denote
items with expert and crowd labels, where ‘+’ and ‘-’ mean
positive and negative.* denotes the current item we consider.

The loss is a function of misclassification counts (False
Positives and False Negatives), but in practice tallying these
requires gold standard reference labels that we do not have
during active learning. Therefore, in place of this reference
set of labels, we use the predicted ‘true’ labels for each
item when calculating the expected loss (factoring in asso-
ciated uncertainty around these predictions). We note that
care must be taken here in calibrating probability estimates



from a sample collected via active learning: by definition
this will not constitute an independent and identically dis-
tributed (i.i.d.) sample of the item space. We address this via
inverse-weighting, as described further below.

The challenges inherent to our approach can be de-
composed into three sub-tasks:

1. Predict the response to an item from the crowd or expert.

2. Predict the true label of unlabeled items.

3. Predict the true label of items with only crowd labels (we
refer to this model as the crowd accuracy model).

Proposed Active Learning Approach
We use probabilistic classifiers for these tasks. Concretely,
these are trained on the (crowd and expert) labeled portion
of the dataset and then applied to unlabeled items, providing
an estimated distribution over the labels of those items which
we use a proxy for the first two task above. For the crowd
accuracy model, we need to take into account crowd fallibil-
ity. We consider a simple model where crowd decisions on
a given item are assumed i.i.d., conditional on the true label.
That is, we assume that each crowd worker gives a noisy ver-
sion of the true label and that the accuracy of this response is
contingent on what the true label is. Thus for binary labels,
the conditional distributions are modeled as Bernoulli ran-
dom variables specifying the probability of responding with
0 or 1. These class-conditional parameters can be estimated
from the items for which we have both crowd and expert la-
bels, where the latter is taken as ground truth. Furthermore,
we can incorporate an informative prior to reflect a priori
beliefs regarding crowd worker accuracies.

Algorithm 1: Estimate the expected loss of a state
INPUT:
• DE = items with expert labels.
• DC = items with only crowd labels.
• DU = items with no labels.
• FunctionL(ŷ, y) = the loss of returning label ŷ for an item

of true label y.
• Crowd Accuracy Model PC(x,K, y) = probability that

the true label for item x is y, given the set of crowd la-
bels K.

• Y = set of possible labels, {0, 1} for binary data.
1: Clf ← TRAIN(DE , DC ) . Train classifier
2: LossC ← 0 . Loss for crowd-labeled examples
3: for (x,K) ∈ DC do
4: ŷ ← CONSENSUSLABEL(K) . Majority vote
5: LossC ← LossC +

∑
y∈Y PC(x,K, y)L(ŷ, y)

6: PU ← PREDICTPROB(Clf , DU )
7: LossU ← 0 . Loss for unlabeled examples
8: for x ∈ DU do
9: ŷ ← PREDICTLABEL(Clf , x)

10: LossU ← LossU +
∑

y∈Y PU (x, y)L(ŷ, y)

11: return LossC + LossU

Together, the classifier and crowd accuracy models are
sufficient to estimate the loss expected in an arbitrary state.
Algorithm 1 provides more concretely the steps we take to
estimate this. Note that the expected loss incurred for items
labeled only by crowd members and those that are as-yet
unlabeled are computed separately. We assume expert infal-
libility (i.e., zero loss for expert labels) as a simplifying but
often nearly true assumption, evidenced by the extremely
high inter-annotator agreement rates cited earlier (Mateen et
al. 2013). In line 6, the (class conditional) crowd accuracy
model is used to predict the probability that each crowd la-
beled item is correct. This estimate is in turn used to weight
the corresponding contribution to the loss. In Line 9, the
classifier trained on labeled items is used to predict class
membership probabilities for unlabeled items. Intuitively,
the expected loss for a given item is smaller when the crowd
accuracy model (when we have crowd labels) or the classi-
fier (for unlabeled items) agrees with the label in question.

Given the algorithm just described to estimate the loss at
an arbitrary state, we can now evaluate the expected loss for
each potential action. The active learning strategy naturally
follows from this: the selected action will be a function of
the estimated losses incurred by taking each action, scaled
by the associated labeling cost. This strategy explicitly aims
to maximize loss reduction per cost unit.

Algorithm 2: Decision-making (active learning)
INPUT: Same as Algorithm 1

1: Clf ← TRAIN(DE , DC )
2: PU ← PREDICTPROB(Clf , DU )
3: for x ∈ DU do . Consider querying the crowd
4: L[C, x]← 0
5: for y ∈ Y do
6: ExpLoss← Algorithm1(DU−x,DC+(x, y))
7: L[C, x]← L[C, x] + PU (x, y)ExpLoss

8: for (x,K) ∈ DC do . Consider querying the expert
9: L[E, x]← 0

10: for y ∈ Y do
11: ExpLoss← Algorithm1(DC−x,DE+(x, y))
12: L[E, x]← L[E, x] + PC(x,K, y)ExpLoss

13: CL← Algorithm1 . Current Loss
14: Score← [] . Hash labeler/item pairs to scores
15: Score(C, x)← (CL− L[C, x])/Cost(C))∀x ∈ DU

16: Score(E, x)← (CL− L[E, x])/Cost(E))∀x ∈ DC

17: return Score

Algorithm 2 presents the core of this decision making
procedure, which calculates scores (expected losses over
costs) for each state using Algorithm 1 as a subroutine. We
consider taking the possible action for each item not yet la-
beled by the expert. Thus each item in the two candidate
pools (DE and DU ) is considered, and we simulate adding
these to the corresponding labeled sets with each (hypotheti-
cal) label in turn. We then estimate the loss that would be re-
alized if this hypothetical label were accurate by Algorithm
1 and weight the contributions of these expected losses with
the estimated probabilities that the hypothetical label is in-



deed the ‘true’ label (using the crowd accuracy model or the
classifier). For a given item/action pair, the expected loss is
then the average of the losses estimated for each possible
label, weighted by the estimated probabilities of the said la-
bels. We denote these by L(C, x) and L(E, x), denoting ex-
pected losses associated with querying the crowd and expert
for item x, respectively. Finally, the score for each of these
item/action pairs is is simply the expected reduction in loss
divided by the cost of that action.

Accounting for Active Sampling Bias
Given the preceding discussion, the optimal decision at any
given point is to simply select the action with the high-
est score. However, rather than taking this deterministic ap-
proach, we instead opt to select an action with probability
proportional to its score. That is, the scores calculated in Al-
gorithm 1 are normalized to a probability distribution over
actions and we select a specific action from this distribu-
tion. The motivation for this stochastic approach is two-fold.
First, it enables continuous exploration of the space, which
may avoid myopic focus on a single area of the item space.
Perhaps more importantly, it lets us perform bias correction
for items selected by active learning, which we now discuss.

Training sets collected via active learning exhibit sam-
pling bias by definition: an i.i.d. sample is just standard (pas-
sive) learning. In practice, if one is performing uncertainty
sampling, then items selected during active learning will
tend to be closer to the current decision boundary. The dis-
tribution of such items may be considerably different from
the population of all items. For example, consider the case
of binary imbalanced datasets, which contain far fewer items
from one class (the minority class) than another (the major-
ity class). Because uncertainty sampling tends to select items
close to the decision boundary, it follows that minority ex-
amples will be over-represented in the resultant dataset.

Unfortunately, most learning algorithms assume that the
training set is an i.i.d. sample of the population. The bias
induced by active learning can severely affect classifier per-
formance. Our solution to this follows previous efforts to ad-
dress this issue in active learning and specifically is based on
Importance Weighted Active Learning (Beygelzimer, Das-
gupta, and Langford 2009). The idea, known generally as
Horvitz-Thompson estimation (1952), is to weight items by
the inverse of the probabilities of having been selected:

wi =
1

pi
∝ 1

score(R, xi)
(1)

where R ∈ {C,E}, depending on whether xi was labeled
by the crowd or the expert (see Algorithm 2). The weights
w can then be used to correct an estimator. Continuing our
example of the imbalanced dataset, suppose we would like
an estimate of the proportion of positive items in the popu-
lation of items, derived using the items selected via uncer-
tainty sampling. A standard maximum likelihood estimator
(over an i.i.d. sample) would simply calculate the proportion
of positive items selected. However, as noted above and in
previous work (Wallace et al. 2013a), this will almost cer-

tainly be inflated in the actively collected sample. We can
correct this using the following weighted estimator:

p̂ =

∑n
i=1 wiyi∑n
i=1 wi

(2)

where yi is the binary label for item i. This estimator gives
higher weights for items with lower probability of having
been selected and therefore intuitively tends back to the es-
timate that might be taken over an i.i.d. sample.

In our case, we use item-weighting during model param-
eter estimation, where weights are set to wi (defined above).
Intuitively, the classifier will be biased to finding parame-
ters that correctly classify those items with larger weights,
because it incurs greater penalty during training when these
are misclassified. Our aim here is to improve the probabil-
ity estimates that we rely on to calculate the expected loss;
if these are unreliable due to sampling bias, then it follows
that the expected loss estimates will also be unreliable and
hence the entire decision theoretic approach may fail.

Estimating the Accuracy of Crowd Workers
The last component in our approach is the Crowd Accu-
racy Model. For concreteness and clarity, we present our
model for the case of binary labels, but the approach may be
trivially generalized to multiclass problems. We make the
assumption that, conditioned on the true (reference) label,
crowd members independently and identically give the cor-
rect answer with some (latent) probability to be estimated.
Put another way, the answers of k crowd members, given the
true label ∈ {0, 1}, is a Binomial random variable Bin(k, p)
where p is the parameter of interest. We have one such vari-
able for each possible (true) label. Estimation of p for both
label cases is straightforward: we take a smoothed maxi-
mum likelihood estimate using the set of items labeled both
by crowd workers and the expert. Specifically, let yci be the
crowd label and y∗i be the true label. We have:

P (yci = y′|y∗i = y) =
c(y′, y) + αy′,y∑

ỹ∈{0,1}[c(ỹ, y) + αỹ,y]
(3)

where c(y′, y) is the observed number of items that the ex-
pert labeled as y and a crowd member labeled as y′. The
αs are smoothing parameters (which may be viewed as pri-
ors on counts, assuming a Bayesian view). Using this model,
we can predict the correct label of items from k crowd labels
{y′1...y′k} as follows:

P (y∗i = y|yc1i = y′1...y
ck
i = y′k) = (4)∏k

j=1 P (y
cj
i = y′j |y∗i = y)P (y∗i = y)

P (yc1i = y′1...y
ck
i = y′k)

(5)

Figure 1 schematically depicts our overall approach. In
practice, this approach is computationally intractable be-
cause it requires considering each possible action for each
item by calculating the expected loss in each possible new



state, which entails retraining the classifier to estimate prob-
abilities to evaluate the loss. Fortunately, various approxima-
tions can be used to make the approach practically feasible,
which we discuss in detail below.

Implementation Details
For the base probabilistic classifier, We adopted regularized
Logistic Regression as implemented in the Scikit-Learn li-
brary (Pedregosa et al. 2011) using Stochastic Gradient De-
scent (Bousquet and Bottou 2008).

Given features {f (i)k |k = 1..F} for each item i, the clas-
sifier defines the conditional probability of the label Y (i) as:

Pr(Y (i) = 1|f (i)) = sigm

(
F∑

k=1

wkf
(i)
k

)
(6)

Given a labeled training set, Gradient Descent minimizes
its negative conditional log likelihood, with regularization:

L(w) = −
n∑

i=1

log(Pr(Y (i)|f (i))) + αR(w) (7)

by moving the weights w a small step in the direction of
steepest descent, which is the negative gradient. The empir-
ical loss is traded off against a regularization penalty R that
attempts to keep weights small. The degree of regularization
is controlled by the parameter α. Here we used a default α
value of 0.0001 and L1 regularization, defined as:

R(w) = ||w||1 =

F∑
k=1

|wk| (8)

A feature of Logistic Regression trained by Stochastic
Gradient Descent that is important for our approach is its
support for incremental training, i.e., efficiently updating the
weights after new examples become available. This is criti-
cal for the performance since our approach involves retrain-
ing the classifier after new item(s) with labels are added.

Although we aim for a principled approach, some aspects
of this problem necessitate heuristics to address practical
problems. Heuristics were developed using only one of the
four datasets and were not tuned to optimize performance.

Firstly, there is the aforementioned problem of computa-
tional intractability from having to enumerate all possible
next states. We follow (Roy and McCallum 2001) and adopt
a pruning strategy to reduce the search space, considering
only the 100 items for each action type (query crowd and
query expert) about which the model is least certain. Sec-
ondly, for the querying expert action, we approximate the
expected loss reduction of the action by the expected loss of
the crowd-labeled item. In practice, the main improvement
to be realized through querying the expert is to increase cer-
tainty about the crowd labeled item. These heuristics yielded
a very practical run-time, typically requiring only a few sec-
onds to make each decision on a 3.40GHz machine.

Another practical problem we encountered is that the pre-
dicted loss reduction of querying the crowd for an unla-
beled item can be very noisy. Indeed, Figure 2 illustrates

this point: one can see many (positive and negative) spikes
in the plot. Our model predicts that querying the crowd for a
given unlabeled item can greatly reduce the loss, but at some
point the action slightly increases the loss. Recall that the
action of querying the crowd for an unlabeled item incurs a
small expected loss of the crowd being incorrect, and this is
effectively traded off against the expected gain of receiving
a correct label from the crowd on the given item. We believe
the latter estimate is noisy, in part, because we are only look-
ing one step ahead. To mitigate this problem, we smooth the
estimate through interpolation, thus incorporating observed
reductions in loss resulting from querying the crowd for la-
bels. Specifically, we take the final loss reduction estimate
as:

0.5LR + 0.5
1

T

T∑
i=1

PT−iλ
i (9)

where LR is the current predicted reduction, T is the number
of iterations taken, PT−i is the reduction in loss i iterations
in the past, and λ = 0.99 gives more weight to the more re-
cent reduction. This technique is applied separately for both
actions of querying either the crowd or an expert.

Figure 2: An example of the maximum predicted and
smoothed loss reduction (over all unlabeled examples) of
querying the crowd. The values plotted are proportional the
maximum score of querying the crowd for any item.

Experiments
Datasets
We use four systematic review datasets for our experiments.
All of these comprise the screening decisions made by ex-
perts (professional systematic reviewers) regarding the rel-
evance of citations to the corresponding review. These are
binary judgements, because published studies either will or
will not meet the specified inclusion criteria for a given re-
view. Characteristics of these datasets are presented in Table
1. For each of these datasets, we collected crowd labels via
Amazon’s Mechanical Turk platform for questions which



Dataset Number of citations Deemed relevant (%)
Proton Beam 4,749 243 (5.1%)
Appendicitis 1,664 242 (14.5%)
DST 8,071 183 (2.3%)
Omega 3 5,774 310 (5.3%)

Table 1: Characteristics of the systematic review datasets
used. We report the total number of citations screened for
each review and the number deemed relevant (i.e., y = 1).

taken together constitute the inclusion criteria (Mortensen
et al. 2015). For every abstract, we collected 5 such crowd
decisions. This dataset is freely available online2.

We refined our approach using two of the four datasets,
Proton Beam and Appendicitis, as development
data. We held out the other two datasets, DST and Omega
3, for final testing; this helped safeguard the generality of
our findings by preventing us from over-engineering an ap-
proach for the specific datasets used.

Experimental Setup
For each citation, we derived unigram TF-IDF features from
the corresponding title, abstract and keywords. We did not
remove stop-words. For each citation, we obtained a ‘gold
label’ from the expert and 5 labels from the crowd. We sim-
ulated active learning as follows.

The algorithm being tested is given access to all feature
vectors for all items, and a small seed set of all (i.e., 5)
crowd labels for 100 randomly selected items. The learner
is allotted a budget to be spent on requesting additional la-
bels. At each step: (1) the learner selects an item and labeler
(crowd or expert); (2) the corresponding label is exposed to
the learner; and (3) its budget is updated and the underlying
model is retrained. This process proceeds until the budget
has been exhausted.

Naturally, the cost of querying an expert is (considerably)
more expensive than acquiring labels from the crowd. We set
the cost of an individual crowd label to 1 unit and the cost of
an expert label to E units, so querying the expert is E times
as expensive as querying a single crowd worker.

Evaluation is performed at each step in the simulated ac-
tive learning process. Specifically, we measure: (1) the qual-
ity of the acquired labels and the classifier induced on this
training set, and (2) the cost incurred so far on these labels.
After a new item is selected and the label revealed, the clas-
sifier is retrained and used to predict labels (and associated
probabilities) for the as-yet unlabeled examples. For each
item with only crowd labels, a consensus label is inferred by
majority vote. Next, all of the collected and predicted labels
are compared to the true labels. The loss is then calculated
as a weighted sum of False Positives and False Negatives:

Loss = FP +R× FN (10)

The loss ratio R indicates that missing one relevant docu-
ment (i.e., a False Negative) is as costly as including R ir-
relevant documents (i.e., False Positives). In the systematic
review domain, these rare positive examples are the relevant

2github.com/bwallace/crowd-sourced-ebm

citations, and overlooking them is extremely expensive be-
cause it may undermine the comprehensiveness of the sys-
tematic review being conducted.

In our main experiments, we set cost ratio E = 100 and
loss ratio R = 10 to realistically reflect our motivating sce-
nario (outlined above). The cost ratio E = 100 captures the
observation that a typical (Mechanical Turk) crowd worker
might earn ≈ $1.5 / hour, while a trained physician might
earn ≈ $150 /hour.

We compare 4 algorithms in our experiments:

• US-Crowd. Uncertainty Sampling: crowd labels only

• US-Expert. Uncertainty Sampling: expert labels only

• US-Crowd+Expert. Use Uncertainty Sampling to select
an item for the crowd to label. If crowd members are not
unanimous, then send that item to the expert to relabel.

• Decision Theory. Use our approach, as described above.

The uncertainty is measured using the classifier’s predicted
probability. That is, we select examples with predicted prob-
ability closest to 0.5.

Figure 3 presents results for Proton Beam and
Appendicitis. Results summarize 5 independent runs
in which all strategies had access to the same randomly se-
lected (for each run) set of seed crowd-labeled examples. In
both datasets, one can see substantial improvement realized
by the proposed decision theoretic approach, compared to
other algorithms. US-Crowd, which uses only crowd labels,
does manage to reduce the loss rapidly in the beginning, but
then stops improving later on. At the outset, when explo-
ration is most valuable, spending a small amount of money
to collect many crowd labels is quite beneficial. At some
point, errors in these noisy labels begin to increase loss.

US-Expert performs well in the end, but it is not efficient
when the budget is limited. If we allow higher loss then
other algorithms can considerably reduce labeling cost. US-
Crowd+Expert makes use of crowd labels and also defers to
the expert when necessary. It is conceptually simple but has
limitations. As can be seen, toward the beginning, asking the
expert for every item in which the crowd is not unanimous
is not efficient. And when many labels have been collected
(near the end of the learning process), there remain items
about which the crowd is unanimously wrong (evidencing
systematic bias between crowd vs. expert populations). This
can be seen clearly in the Appendicitis dataset.

One can imagine the ideal strategy of acquiring crowd la-
bels at the start of the learning process and then making the
gradual transition to deferring to the expert at some later
point. Our approach captures this intuition in a principled
fashion. In the beginning, when we have very few labels, ac-
quiring many labels provides the classifier with new training
examples, which helps the model make better predictions
on the large set of as-yet unlabeled items. The resulting ex-
pected loss reduction outweighs the small expected loss as-
sociated with the uncertainty of the crowd labels. As we col-
lect more labels, the classifier becomes increasingly confi-
dent about the unlabeled items and the benefit of acquiring
more crowd labels diminishes. Expert labels become more
valuable at this point, justifying their higher cost. The point



(a) Proton Beam (b) Appendicitis

Figure 3: Cost v. loss curves of the four approaches on the Proton Beam and Appendicitis datasets. The result for each is
averaged over 5 runs and error bars of one standard deviation are shown to illustrate variance. When the algorithm runs out
of new labels, the lines are extended to the end of the X-axis. For example, the US-Crowd line for Proton Beam ends at
approximately 25000.

at which this happens depends on many factors, including
the difficulty of the screening task (some of these system-
atic reviews require less technical knowledge than others),
the accuracy of the crowd, and the cost and loss ratios. All
of these are explicitly modeled in our approach.

Figure 4 presents the results on our two held-out datasets,
DST and Omega 3. Our decision theoretic approach again
substantially outperforms other approaches in the begin-
ning. However, the results are more mixed on these two
datasets compared to the above. On DST, US-Expert and
US-Crowd+Expert catch up to Decision Theory after the
30000 cost mark. For a period, US-Expert slightly outper-
forms Decision Theory, until a bit after the 100000 cost
unit mark, at which point Decision Theory performs com-
parably to US-Expert, and better than US-Crowd+Expert.
In the case of Omega 3, after another strong showing at
the start of the process, Decision Theory is outperformed
by US-Crowd+Expert for a part of the curve but then ulti-
mately achieves comparable performance. It is worth noting
that US-Crowd+Expert performed quite poorly in the case
of both Appendicitis and DST, so this approach is rather in-
consistent. By contrast, our proposed approach consistently
performs as well as other strategies and frequently outper-
forms all baseline approaches for at least some portion of
the cost-loss curve.

In sum, results on the two held-out datasets suggest that
(1) our Decision Theory approach is consistently one of the
best strategies across datasets, and, (2) it is by far the most
effective strategy when one has a small budget.

Other Settings
We developed our approach with particular focus on our mo-
tivating application of biomedical citation screening for sys-
tematic reviews. This application is characterized by a rel-
atively high cost of false negatives and also relatively ex-

pensive domain experts (compared to crowd worker costs).
However, our approach is general and can be adapted to al-
ternative scenarios by appropriately adjusting the loss and
expert cost ratio parameters (i.e., setting R and E to reflect
the trade-offs inherent to a target domain).

To demonstrate this, we again apply our approach to our
two development datasets of Proton Beam and Appendici-
tis, but assuming different values of E = 25 (instead of
100) and R = 1 (instead of 10). In the case of the former,
the proposed approach fares rather well, ultimately outper-
forming all other strategies when the budget is exhausted
(although showing a dip in performance on the Proton Beam
dataset around a cost of 10000). However, results when we
vary the cost ratio (of false positives to false negatives) are
more mixed. In these cases, our decision theoretic approach
does, for both datasets, ultimately end up as one of the top
two strategies. However, in both cases it is outperformed by
other strategies earlier in the learning process.

Conclusions and Future Work
This is the first work that we are aware of to explicitly con-
sider an approach for active learning from a domain expert
and crowd simultaneously. We are interested in scenarios in
which one aims to exhaustively label a finite pool of exam-
ples with a limited budget, using a combination of crowd
workers, domain experts and machine learning. To explore
this setting, we used real data – comprising labels from a
domain expert and from crowd workers – for the task of
biomedical citation screening. We have made this data avail-
able for further research. We have extended previous work
in decision theoretic “optimal active learning” to allow us
to formally reason about which item to next seek a label for
and, jointly, whether to query crowd workers or a domain
expert for said label. Results demonstrate that the proposed
approach performs well for biomedical citation screening.



(a) DST (b) omega3

Figure 4: Results (cost v. loss curves) on two held out datasets, from the DST and Omega-3 reviews.

(a) Proton Beam (E=25, R=10) (b) Appendicitis (E=100, R=1)

(c) Appendicitis (E=25, R = 10) (d) Appendicitis (E=100, R=1)

Figure 5: Loss-cost curves for Proton Beam and Appendicitis datasets under different cost ratio E and loss ratio R settings.



Moreover, we have shown the approach can be generalized
to different settings and maintain competitiveness.

In future work, we plan to better model individual crowd
workers by considering worker identity and explicitly mod-
eling noise in crowd labels. This could include routing la-
beling tasks to specific workers based on predicted perfor-
mance (Jung and Lease 2015). Moreover, we will explore
multi-step look-ahead to make better decisions (with care
to avoid intractability). Another direction will be to use the
model to provide label quality assurance or guarantees.
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