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Abstract

We used Common Lisp to build a complexr and
powerful interactive graphics simulation system
called “Prism”, for planning radiation therapy.
Special features of Common Lisp that we used to
advantage include: lexical closures, the Common
Lisp Object System (CLOS), and the Common
Lisp binding to the X window system (CLX). We
use events, indirect invocation and mediators to
achieve modularity. Some of the components of
Prism are: a contoured volume editor, computed
medical images, a rule based function to generate
target volumes, and a radiation dose computation
function. To achieve fast floating point computa-
tion in the latter, we applied both generic and ven-
dor specific optimizations. The result is a system
that is routinely used in the University of Wash-
ington Cancer Center, by people with no program-
ming expertise. QOur experience shows that Lisp
is practical, powerful and efficient for interactive
graphics, complex modeling and intensive floating
point computations such as radiation dose model-
ing. Additional work in progress includes a med-
ical image server and an interface to an on-line
anatomy atlas.
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1 Introduction

We designed, tested and are using in the Univer-
sity of Washington Cancer Center a complex med-
ical application of Common Lisp, the Prism radia-
tion treatment planning system. Radiation treat-
ment planning (RTP) systems provide modeling
of the human body and radiation treatment ma-
chines, analogous to computer-aided design sys-
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tems.  Historically RTP programs been writ-
ten for mainframe computers, time-sharing sys-
tems, mini-computers with interactive graphics,
and most recently window-based desktop worksta-
tions. Radiation therapy planning projects have
contributed to developments in computer systems,
in addition to having an enormous impact on the
level of sophistication of radiation treatment itself.
The Prism project demonstrates the effectiveness
of using Lisp in a demanding production software
environment.

Radiation therapy directed at malignant tumors
involves aiming and collimating a radiation beam
at the tumor in such a way as to deposit a large
amount of energy in the tumor and as little energy
as possible to surrounding (healthy) tissue. Fig-
ure 1 shows a typical radiation therapy machine.
Radiation, such as X-rays (high energy photons),
electrons, neutrons and other particle beams, can
kill tumor cells by causing ionization of atoms in
or around the cell, and in turn, this can result in
molecular bond breakage, i.e., damage to the DNA
of the cell, or it can produce free radicals, active
chemical species, which then attack the DNA. In
either case, the goal of radiation therapy is mainly
one of solving an energy delivery problem, to di-
rect as much radiation into the tumor as possible
consistent with avoiding the healthy tissue.

The remainder of this section describes the ra-
diotherapy planning problem, the role of computer
simulation, and a brief review of related work. Sec-
tion 2 describes some of the design problems in
the Prism system, with attention to how we use
various characteristic features of Lisp. Section 3
discusses how effective these solutions are in light
of four years of experience using the system, fixing
problems discovered after deployment, and adding
new features. In section 4 we present briefly our
work in progress toward future capabilities.



Figure 1: A radiation treatment machine, with a member of the UW staff positioned as a patient would be,
and a therapist to operate the machine. Once the patient and treatment machine are properly positioned,
the therapist leaves the treatment room, then turns on the radiation beam, while monitoring the patient via
closed-circuit television. This procedure is repeated for each treatment beam direction.

1.1 The use of computers in radio-
therapy planning

A modern radiation therapy machine consists of
a high energy linear accelerator, producing X-ray
(photon) beams or electron beams in the range
of 4 to 25 million electron volts (MeV). The ma-
chine has a lot of flexibility to aim the beam and
shape it in arbitrary ways. The radiation oncolo-
gist would like to take advantage of this flexibility
by designing a plan that achieves a curative dose
in the target region while minimizing the dose to
surrounding tissues.

The process of designing good radiation plans
requires the use of RTP systems. The basic steps
are:

1. Gather clinical and physical data
2. Decide general approach

3. Select radiation type(s)
4

. Use computer simulation to configure radia-
tion beams

5. Verify feasibility

Two factors make radiation therapy effective
and practical. Understanding these makes clear
the role of computer simulation as a step in the
design of radiation treatment.

The first factor concerns the physics of radiation
beams. For high energy photons, the maximum
dose, or energy deposition, is not at the surface,
but can be as much as several centimeters below
the skin surface. This is illustrated by the graph
of dose vs. depth in figure 2.

The second factor concerns the geometric capa-
bilities of the radiation treatment machine. It is
possible to deliver the radiation by aiming the ma-
chine in each of several directions, turning it on for
a short time from each, so that the aggregate dose
to the tumor is high, but the dose deposited in
the surrounding tissues is spread out, and there-
fore lower.

Figure 3 illustrates a two-dimensional cross sec-
tion of a plan showing two radiation “beams” over-
lapping to give this effect.

Thus the problem of deciding how to treat the
patient is one of choosing directions, apertures,
and relative amounts of radiation from some num-



Figure 3: A simple radiation treatment plan cross sectional view
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Figure 2: Dose from a single radiation beam vs.
depth in tissue

ber of radiation beams. A collection of radiation
beams thus specified constitutes a plan.

In figure 3 there are lines showing isolevel con-
tours for various radiation dose levels. These come
from interpolation of a grid or array of computed
values of radiation dose that would result from the
specified arrangement of radiation beams. The

formulas used to predict the dose at any point
within a patient from any specified radiation beam
are partly based on principles of radiation physics
and partly empirical, interpolating measured data
in standard test conditions. The refinement and
testing of such formulas is a large and active area
of research in medical physics. A survey of the
principles can be found in textbooks, e.g., Khan
[1], and the particular formulas used in our RTP
system are described in exhaustive detail in a tech-
nical report [2]. We describe aspects of the imple-
mentation of these formulas in Common Lisp here
in section 2.4.

1.2 A short history of RTP system
development

As mentioned, methods are well known for com-
puting the physical dose received anywhere in the
body from a given beam configuration. However,
there is no established method for solving the in-
verse problem of computing a set of beam param-
eters, given a desired dose distribution. In typi-
cal clinical practice a dosimetrist (a person with
special training and experience) uses an RTP sys-
tem to display the geometry and dose distribu-
tion. The dosimetrist looks for regions of inade-



quate dose to the target and excessive doses to sen-
sitive structures, and applies modifications that
will correct the problem and thereby improve the
plan. Therefore the “configure radiation beams”
step above is an interactive generate-test loop.

The importance of having powerful three dimen-
sional radiation treatment planning software tools
has been evident for some time [3, 4]. Much recent
work has focused on enhancing the delineation of
anatomy [5, 6], and providing visualization tools
[7].

Early systems ran as teletype applications on
dialup time sharing systems, then on dedicated
minicomputers with frame buffer displays. As the
computer and graphics hardware became faster
and cheaper, the medical physicists writing RTP
programs became more ambitious about the kind
of interactive graphic displays they implemented.
Through most of this period, from the late 1970’s
through early 1990’s, most emphasis was on ar-
cane and clever features, rather than on software
architecture.

At the University of Washington Radiation On-
cology Department our focus has been on soft-
ware design, both to make the development pro-
cess efficient and to provide flexibility in use and
software evolution. We previously developed two
generations of systems that experiment with the
organization of treatment planning steps such as
delineation of anatomy, manipulation of radiation
beams, display of dose distributions, and produc-
tion of output. The first system [8], which pro-
vided two dimensional treatment planning, used
a new modular design [9] that made the system
very flexible. Its menu system was easily modified
or supplemented without changing the programs
themselves. It allowed the user to add or change
any data items in the treatment plan at any time
rather than enforcing a sequence of operations on
the user. The second system [10, 11] provided high
resolution display and allowed the user to put on
the screen multiple plots displaying plan and im-
age data simultaneously. Integration with com-
puter controlled therapy machines [12] has been
part of the project from the beginning.

These first two systems were written in Pas-
cal, for DEC VAX computers running VMS. The
graphic display was a Ramtek 9465 frame buffer.
It was difficult because there are no facilities in
Pascal for defining abstract objects, i.e., classes,
and for defining generic functions for those ob-
jects. Although we created a workaround for our
RTP system, it was inflexible (it was difficult to

add new object classes), and hard to understand,
because the implementation had much code de-
voted to object management and function dis-
patch. This obscured the actual application, the
radiotherapy objects and their operations. Even
in our earliest publication [8] we recognized that
Lisp would be a promising language to use for our
design ideas. At that time, though, there was no
well supported Lisp system that could be used for
our application.

The emergence of Common Lisp as a standard
and widely supported commercial product was a
radical change. Common Lisp implementations
became available that had very efficient compil-
ers, support for the X window system (CLX, the
de facto standard Common Lisp binding to the
X protocol), facilities for application deployment,
and an excellent standard object-oriented pro-
gramming system, the Common Lisp Object Sys-
tem (CLOS).

The Prism system design emphasizes a previ-
ously unimaginable flexibility in the user interface
and in the ability to incorporate arbitrary num-
bers and kinds of radiotherapy related objects in
the simulation.

A sample Prism screen is shown in figure 4.

2 Design ideas used in Prism

Prism consists of a number of modular compo-
nents, including a graphical user interface build-
ing kit, an implementation of abstract behavioral
types and relationships, a graphic rendering sub-
system, a scheme for storing simulation data in
files for later retrieval and display, control pan-
els for user manipulation of radiotherapy objects,
special tools such as a rule based reasoning sys-
tem, and a radiation dose computation compo-
nent. We describe the implementation issues of
some of these in the following subsections.

2.1 SLIK: a lightweight GUI kit

SLIK (Simple Lisp Interface Kit) is a graphical
user interface tool kit written in Common Lisp,
using CLOS (the Common Lisp Object System)
and CLX (the Common Lisp interface to the X
window system protocol). The purpose of SLIK is
to provide a facility for handling user interaction
in an X window environment. It provides a mini-
mal set of facilities for building real applications,
including the usual set of user interface devices or
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Figure 4: A screen display from the Prism RTP system, showing control panels, medical images and other
objects derived from them, as well as graphic representations of radiation beams.

“widgets”. It is not intended to completely hide all
the details of the X window system, but rather to
encapsulate X event processing and provide some
basic user interface widgets.

This limited goal is in contrast to more com-
prehensive systems such as CLIM [13] and Garnet
[14]. CLIM provides an abstract drawing model
that can be realized on several window systems,
not just X. However, CLIM does not provide the
completely general desktop model of an applica-
tion that can be made of multiple active windows.
Garnet provides a comprehensive system for build-
ing applications. It includes its own object sys-
tem, an alternative to CLOS. At the time Garnet
was developed, CLOS was not highly developed
or efficient, but these considerations are moot at

present, with efficient and complete CLOS imple-
mentations coming standard in Common Lisp sys-
tems from most sources. Garnet is large, a con-
sequence of providing a lot of capabilities. One
interesting aspect of Garnet is the provision for
constraints. These are important in interactive ap-
plications that have dynamically interacting com-
ponents. In SLIK such constraints can be imple-
mented by using abstract behavioral types, events,
and mediators [15]. In Garnet, only “one-way”
constraints are supported, but the event/mediator
strategy used in SLIK is more general as it sup-
ports bidirectional constraints and can also repre-
sent other kinds of behavioral relationships.

The event scheme used in SLIK is not related
to X window system event dispatching. In the



SLIK code X window system events are handled
independently (and invisibly to the application).

SLIK is not targeted for a particular window
manager. SLIK widgets are very spartan, hav-
ing no fancy shading or style such as that typical
of Motif [16]. Future implementations of SLIK
may change the appearance of the devices, so they
have a more polished appearance, but the pro-
grammer’s interface will not change.

SLIK provides three facilities for the interface
builder: a collection of user-interface objects (di-
als, sliders, control panels, graphical pictures of
data, etc.), a function for dispatching X window
events to the objects that need to act on them,
and a protocol for the objects to interact with each
other and with user application code.

The objects in SLIK that are available for use by
the interface builder (programmer) are the typical
Graphical User Interface (GUI) objects found in
most interface tool kits. They are implemented
as instances of a class hierarchy. This provides a
straightforward way to add new kinds of objects.

The frame is the base class that encapsulates a
lot of X details, and is able to handle an X event
in its window. The kinds of X events that frames
handle include pointer entry and exit, pointer mo-
tion within the frame’s window, button press and
release, keystrokes, and window exposure.

A frame may be a simple control such as a dial
with a pointer, a compound control such as a di-
albox (which combines a dial and a textline), a di-
alog box which waits for input, or a control panel
of your own design, a frame with other frames ar-
ranged as you wish in the control panel window,
possibly including graphic illustrations. A control
panel may have smaller control panels as its com-
ponents, as well as individual controls.

A picture is a frame that contains graphical
and/or text information that is part of the appli-
cation, e.g., a graph of some data or an image, or
a 3-dimensional rendering of some physical object.
A picture can also respond to X events — for ex-
ample, the picture might include “control points”
that can be grabbed so the object may be pulled,
stretched or rotated. The SLIK package includes
support for several types of “control point” ob-
jects.

2.1.1 Events and mediators: functions as
first class objects

Within the SLIK tool kit, components may need
to notify other components when things change or

events occur. For example, when a dial pointer
in a dialbox moves, a text representation of the
dial setting should be updated, and vice versa.
Also, in the application itself, there will be in-
teracting components. A dial may be attached
to some physical object in a simulation, for ex-
ample, and when the dial changes, the simulation
pictures must update. One way to handle this is
to code explicitly this interdependence of behavior
in the objects themselves. This explicit invocation
leads to large tangled systems. Object oriented
programming languages do not avoid this prob-
lem, as explicit mention of particular objects by
other objects, as well as generic function names,
is still required. Even implicit invocation is not
sufficient as this just reverses the dependencies.
Instead we use abstract behavioral types and medi-
ators [17], where the behavioral relationships be-
tween objects are external to the description of
those objects.

An abstract behavioral type (ABT) defines a
class of objects in terms of the operations that
can be applied to the objects and in terms of the
activities or events the object can announce. One
ABT instance can observe and respond to the ac-
tivities of another by registering one of its own op-
erations with an activity (event) in the interface
of the other ABT. This provides a mechanism for
one or more objects to be notified when a source
object announces an event. The announcement
or event interface is part of the object’s interface
to the surrounding, and not an external device or
global variable.

Abstract behavioral types are implemented
in SLIK by providing events, announcement of
events, and mechanisms for registering interest in
events. SLIK objects use this mechanism for inter-
action with each other in addition to providing an
event interface to the applications that use them.
The attribute accessors and other functions of a
SLIK object provide the usual object-oriented way
in which external agents act on the object. Events
provide a way for other objects to act in response
to the announcement of an event associated with
an object.

In SLIK, an event slot of an object is just an as-
sociation list of (target, action) pairs. The target
is the object that registered interest in the event,
and the action is a function (symbol, function ob-
ject or lexical closure) to be called when the event
is announced. As entities in the running system
register, they simply add a pair to the list, and
as they unregister, the pair is removed. An an-



nouncement simply is an iteration over the list,
calling the action function of each pair, passing
to it the announcer and the target, and any other
useful information. The complete code is shown
in figure 5.

(deftype event () ’list)
(defun make-event () nil)
(defmacro add-notify (party event action)

"ADD-NOTIFY party event action
Adds the party, action pair to
the specified event."

‘(setf ,event
(cons (list ,party ,actiom)
(remove ,party ,event
itest #’eq :key #’car))))

(defmacro remove-notify (party event)

"REMOVE-NOTIFY party event
removes the entry for party in event."

‘(setf ,event
(remove ,party ,event
itest #’eq :key #’car)))

(defun announce (object event &rest args)

"ANNOUNCE object event &rest args
applies the action part of each entry
to the party part of each entry."

(dolist (entry event)
(apply (second entry)
(first entry) object args)))

Figure 5: The event interface implementation

An example of an ABT is illustrated in imple-
menting objects that include variable numbers of
elements. The mathematical notion of a set is the
natural starting point. The idea of a set can be
supplemented with events that announce when an
element is inserted or deleted, thus making the in-
teraction of the set with other objects straightfor-
ward and counsistent with the rest of the tool kit.
SLIK includes a small package, the collections
package, that implements the collection, an
ABT that provides this extension of the idea of
a set. An excerpt of the implementation is shown
in figure 6.

The basic type, event, provides a simple one-

(defclass collection ()
((elements :accessor elements
:initarg :elements
:initform nil)
(inserted :accessor inserted
:initform (make-event))
:documentation
"Announced when an element is inserted.")
(deleted :accessor deleted
:initform (make-event)
:documentation
"Announced when an element is deleted.")

))

(defun insert-element (el coll
&key (test #’equal))

"INSERT-ELEMENT el coll &key test
inserts el into collection coll if not
already present. The new element is added
at the end, not the front of the list."

(unless (member el (elements coll)
:test test)
(setf (elements coll)
(append (elements coll) (list el)))
(announce coll (inserted coll) el)))

and more...

Figure 6: An excerpt from the implementation
of collections, mathematical sets with behavior
added.

way interface for implicit invocation. In SLIK, as
well as in other applications, more complex rela-
tionships are sometimes required. An example of
such a relationship is the maintenance of a one-to-
one relationship between two sets, e.g., a set of ob-
jects in a simulation and the set of control panels
by which the user can manipulate them. Another
example is the case where an attribute of one ob-
ject must be kept consistent with an attribute of
another object, a constraint relationship. Imple-
menting this with events does not avoid the pos-
sibility of a circularity or infinite loop.

We implement these relationships by construct-
ing additional objects we call “mediators”. The
purpose of a mediator is to explicitly and exter-
nally express these complex relationships rather
than embed them in the design of the related ob-
jects. This makes the objects themselves more
modular and makes it easy to understand how the
relationships work. In some cases, it becomes pos-
sible to describe a family of relationships, and thus



reuse the mediator code as well as the code for
the object. Behavior abstraction separates the be-
havior of an object from its use in more complex
structures. Mediators explicitly provide the con-
nections between interacting objects. An example
use of mediators, that maintains consistency be-
tween sets of objects and the set of views that
display them, is shown in figure 7.

(defclass object-view-mediator ()
((object :reader object :initarg :object)
(view :reader view :initarg :view)))

(defmethod initialize-instance :after
((ovm object-view-mediator) ...)
(add-notify ovm (refresh-fg (view ovm))
#’ (lambda (med vw)
(draw (object med) wvw)))

(defclass object-view-manager ()
((obj-set :accessor obj-set
:initform (make-collection))
(view-set :accessor view-set
:initform (make-collection))
(mediator-set :accessor mediator-set
:initform (make-collection)

(defmethod initialize-instance :after
((ovm object-view-manager)
&key mediator-fn ...)

(add-notify ovm (inserted (obj-set ovm))
#’ (lambda (md oset obj)

(dolist (vw (elements
(view-set md)))
(insert-element
(funcall mediator-fn obj vw)
(mediator-set md)))))
(add-notify ovm (inserted (view-set ovm))
#’ (lambda (md oset vw)
...like above...

Figure 7: Excerpt of code that implements the
object-view mediator and the object-view man-
ager.

The object-view mediator in figure 7 simply con-
nects an object with a view in which it appears.
When the view announces its refresh-fg event,
the object is redrawn in the view. There is nothing
special here about using a lexical closure.

Since the number and kind of objects can change
during the course of simulation, as well as the
number and kind of views, we need a mediator (the
object-view manager) that creates and destroys

object-view mediators as necessary, i.e., when an
object is inserted or deleted in the set of objects
or a view is inserted or deleted in the set of views.
Since the kind of mediator needed might be more
specialized than the general object-view mediator
here, i.e., it may vary with the kind of object set
or view set, the object-view manager must use a
lexical closure to capture the mediator construc-
tor function from the lexical environment, when
registering an action with either of the respective
sets.

Because the code is perfectly general, it works
anywhere you need such a relationship, and all
that is needed in each place is to pass the right
object-view mediator constructor function as a pa-
rameter to the object-view manager constructor
function. Got that?

This is particularly cute, because the local con-
text being captured is a function, mediator-fn,
not just a variable. It’s compact, works reliably,
and is not nearly as hard to trace as it looks.

2.2 The graphics pipeline: the use
of CLOS multimethods

Prism uses a pipeline design to implement 2-d and
3-d graphics in the X window system environment.
In order to achieve the effect of gray scale im-
age display and color graphic overlay planes like
the old fashioned frame buffers, while being able
to run on a minimal 8-bit display, Prism does
3-d to 2-d projection in software, and also com-
putes a 128 gray level image from the original
16 bit image data, then adds the color graphics
to the pixmap containing the image. Although
this design does not give the highest performance,
and does not leverage any 3-d graphics accelera-
tor hardware that might be present, it achieves
modularity, ease of adding new objects, and espe-
cially ease of adding hard copy outputs to various
devices (currently HP-GL and PostScript are sup-
ported).

Graphic objects and images are handled differ-
ently in order to deal effectively with a limitation
of the X window system and the use of an 8-bit
display. Graphic objects include any object in the
system which has some graphical representation
and may be depicted in a Prism wview. These in-
clude beams, tumors, anatomy, anatomical land-
marks, seeds, textual annotation, and locator bars.
Images are typically selected or derived from a set
of cross sectional images of the patient’s body, for
example, a Computed Tomography (CT) study.



(CT images are computed from X-ray projections
through a cross section of a patient’s body.) A
view contains a SLIK picture, with a CLX pixmap
and a CLX window. The window appears on the
screen and the pixmap (referred to here as the pic-
ture pizmap) is set to be the CLX “background”
of the window.

2.2.1 Pipeline components

Prism uses caching of intermediate graphical data
structures to enhance the efficiency of drawing,
and employs double buffering to ensure that a
series of redrawing operations appears smooth
and flicker free. The purpose of this “graphics
pipeline” is to be able to update the window on
the screen efficiently and without the flicker that
might appear if it were erased and redrawn with
substantial delay in between those two operations.
The pipeline also serves to separate image data
and graphic overlay data, while providing the op-
tion to perform grey-scale transformations on im-
ages before displaying them. Figure 8 illustrates
this scheme.

So a view contains a foreground, which is a list
of graphic primitives, and a background, which is
a pixmap separate from the SLIK picture pixmap.
A graphic primitive is a representation of the
drawable data corresponding to an object, in a
form suitable for input to CLX primitive drawing
routines such as clx:draw-lines. Graphic prim-
itives are elemental graphic types such as text,
polygons, disconnected line segments, represented
in screen coordinates. The background pixmap
contains an image to be displayed as the back-
ground of the view.

The sequence of operations that lead to display
of data in a view consists of:

1. From the image data, compute the back-
ground pixmap,

2. Transform the object data from real space
into graphic primitives, which are then stored
in the foreground list.

3. Copy the background pixmap containing im-
age data to the picture pixmap associated
with the view (or set the picture pixmap to
all black pixels if no image is to be displayed).

4. Draw the graphic primitives into the picture
pixmap.

5. Copy the picture pixmap into the picture win-
dow (or alternatively erase the window —

since the pixmap is the window background
its contents will appear in the window on era-
sure).

The generic function drew implements some of
these operations. The draw function takes two re-
quired arguments, an object to draw and a view
in which to draw. Three sets of draw methods
are used to display graphical information — one
that updates the graphics cache (graphic primi-
tives) derived from the graphic objects, one that
generates or processes images (or sets of images)
to fill the background pixmap, and one that writes
the contents of the cache into the part of the view
that gets displayed. The draw methods for images
update the view’s background pixmap with a CLX
image derived from the Prism image data and the
view specifications.

It appears in this design that the pipeline is
memory intensive, and there is a lot of overhead
because pixmaps are copied wholesale on each
view update, even though in many situations only
a single object’s graphic rendition needs to be
changed. In practice, copying pixmaps is an oper-
ation that typical graphics hardware performs ex-
tremely well, and it is optimized in many X server
operations. If the X server caches pixmaps in the
server or the hardware, this provides very impres-
sive update rates when running Prism on a host
that is remote from the display. In a demonstra-
tion using a display at the University of Chicago,
running Prism on a system at the University of
Washington, we were able to get Prism to do sev-
eral updates per second, even though the Prism
program was running on a host computer almost
2,000 miles from the display computer.

2.3 Storing objects in files: Lisp,
CLOS and MOP make things
generic

Prism includes functions that read and write
ASCII files, with text representations of objects
such as patient cases. The text representation for
all objects follows a general template, based on
the idea of keyword-value pairs. Printed represen-
tations of these class instances and associated data
are written to and read from files by two functions,
put-object and get-object respectively.

A design goal for this file storage scheme was to
have files that could be manipulated with an ordi-
nary text editor if necessary, and therefore easily
human readable. We also wanted to avoid writ-
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Figure 8: The graphics pipeline and double buffering

ing special formatting and parsing code each time
a new kind of object was added to the system.
The scheme we decided on uses Lisp’s ability to
parse the printed form of an object and determine
its type, and similarly to produce a printed form
dependent on its type. The fact that Lisp can
determine types at run-time is essential in this de-
sign. We also use a little of the Meta-Object Pro-
tocol (MOP) to let the class definitions provide
slot names.

A Prism data file can be understood as a text
stream that can be processed by the Common Lisp
read function, and therefore consists of a series
of printed representations of Lisp objects, mostly
symbols, numbers, strings, and possibly lists and
arrays. Symbols must be qualified by package
names. This is automatically done when the sys-
tem writes data to a file, if the package in which
each symbol is interned is not the current package
and the symbol is not accessible in the current
package (i.e., it may be external or internal in an-
other package, but not imported into the current
package). This is the normal way to run Prism.

The text representation of an object begins with
a symbol that is the class name of the object. Fol-
lowing that are pairs of items consisting of a sym-
bol naming one of the object’s attributes, and a
value for that attribute. The value may be a read-
able Lisp object (a number, a symbol, a list or a
modest sized array), a large binary array, for which
a special rendition is provided, or a construct that
should be interpreted as a list of objects (rather
than a list of simple values). Figure 9 shows an
excerpt from one such data file.

Since the Lisp reader is insensitive to the
amount of “whitespace” between items, the file
may include whitespace and “newlines” as conve-
nient to make it more easily readable by humans.
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The Lisp reader generally converts lowercase in-
put to uppercase, so except for quoted string data,
we assume case insensitivity. The system must be
configured so this works, i.e., the readtable is the
default as described in Steele [18, page 540].

Strings are delimited by the double quote (")
character. Unquoted strings in files are read as
symbols.

The end of the data for the object is demarcated
by the keyword :end with no value following it.

The functions get-object and put-object call
a generic function, slot-type, to determine how
to read object slots from and write them to the
file system. The slot-type function takes two ar-
guments, the object and the slot name. For each
class in Prism, that will be read from or written
to the file system, we provide a method, as neces-
sary. If the class inherits slots from any superclass,
then that method calls call-next-method, since
the slot asked about may be inherited from an an-
cestor class. The default slot-type method returns
type :simple, so slot names of that type do not
need to be explicitly mentioned in the method.
If all the slots are :simple, no special slot-type
method is needed.

When an object is being read from or written
to the file system, the slot type of the slot being
read will cause the following behavior on the part
of get-object and put-object:

:simple Use the standard Common Lisp func-
tions read and write to read and write the
slot’s data.

:bin-array In this case the information in the
file consists of a list of three or four items,
as follows: a string representing a filename,
and two or three numbers, representing the
dimensions of the 2 or 3 dimensional binary



PRISM:PATIENT
PRISM:COMMENTS ("")
PRISM:DATE-ENTERED

PRISM:ANATOMY
PRISM:0ORGAN
PRISM:DENSITY 1.0
PRISM:CONTOURS
PRISM:CONTOUR

PRISM:Z 5.0
:END
PRISM:CONTOUR

PRISM:Z 9.0
:END
etc...
:END

PRISM:NAME
:END
PRISM:0ORGAN

PRISM:DENSITY 0.3

PRISM:CONTOURS etc...

"Liver"

"6-Jun-1994 12:10:25"
PRISM:IMMOB-DEVICE PRISM::NONE

PRISM:DISPLAY-COLOR SLIK:MAGENTA

PRISM:VERTICES ((-11.389 -4.717) (-11.322 -1.146)
(8.761 -0.067) (7.278 0.202) (5.863 0.0)
(-10.378 -6.672) (-11.254 -5.054))

PRISM:DISPLAY-COLOR SLIK:MAGENTA

PRISM:VERTICES ((9.569 2.628) (6.806 4.717) (4.38 5.189)
(-2.359 6.132) (-5.256 6.267) (-7.346 4.919)
(9.03 2.763))

PRISM:DISPLAY-COLOR SLIK:BLUE

Figure 9: A portion of a patient data file

array of data. The binary array data is read
from a separate file by a function for that pur-
pose.

:object Make a recursive call to get-object or
put-object to read or write the slot’s data,
which is itself an object,

:object-1list If the attribute value is a list of ob-
jects, each object is read in turn by a (recur-
sive) iterated call to the get-object function,
and each of those objects follows the same for-
mat. The end of a list of objects for an at-
tribute is demarcated by an additional :end
keyword following the last object in the list.

:collection If the slot’s data is a collection, the
format in the file is the same as for a list of
objects, but as each is read, it is inserted into
the collection, instead of added to a list.
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Not all attributes for an object need to have
values in the file, but if there is no value, the cor-
responding attribute name must not be present,
i.e., it is an error for the file to contain two at-
tribute names in succession with no intervening
value. Note that nil is an allowable value for
some attributes (not all) and is different from an
unbound (or missing) attribute.

All this is independent of anything about ra-
diotherapy. It is parametrized by the class def-
initions themselves (we use the MOP functions
slot-definition-name and class-slots to get
slot names when writing an object to a file), and
by providing methods as necessary for slot-type.

The resulting file store is not an object oriented
database, but suffices for our purposes. Use of an
object oriented database might offer some advan-
tages and useful functionality but it would also
introduce other problems. This is under consider-



ation for the future.

2.4 Dose modeling: efficient float-
ing point computation in Lisp

The implementation of the Prism dose calculation
module is one area that exposed us to both the
best and the worst that Lisp has to offer. On
the one hand, we have no doubt that the su-
perb programming environment offered by Lisp
assists immeasurably in the construction of large
and complex software. On the other hand, tweak-
ing floating-point-intensive Lisp code for optimal
performance is not easy.

The Prism dose calculation module comprises
approximately 3000 lines (about half code and
half comments). It implements an algorithm that
is fairly straightforward but somewhat elaborate.
Essentially, we compute the dose to each point
(either in a prespecified set or on a regular 3-
dimensional grid) by multiplying together fac-
tors accounting for the geometry of the generat-
ing equipment, the inverse-square-law divergence
of photon flux, and the near-exponential absorp-
tion in tissue. The calculation modifies these
factors to approximate the effects of tissue non-
homogeneities. If blocks (Cerrobend shielding ma-
terial) are present in the radiated field, we calcu-
late a component that accounts for radiation scat-
tered to the dose point as if the blocked area were
the only area illuminated by the beam and then
subtract this component (weighted by the block’s
absorption) from the dose at that point as if the
blocks were not present. If the radiation source
has a complex geometry (for instance, as produced
by a multileaf collimator which can approximate
arbitrary portal field shapes) we use numerical
spatial integration to calculate the equivalent rect-
angular geometry which would yield the same dose
to the test point.

Our dose calculation model is not very sophis-
ticated in a theoretical sense — it is basically a
complicated table lookup. However, the several
numerical integrations and the correction for tis-
sue absorption inhomogeneities (which uses a ray-
tracing algorithm) result in code of considerable
complexity. This complex code is iterated over
each dose point in the point-set or dose-grid. Typi-
cal grids may consist of up to a million points. And
all this is for a single beam. A typical calculation
sums the computation of dose to each point from
up to 20 or 30 beams, each calculated indepen-
dently. Thus a not-uncommon case may involve
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several dozen table-lookups and tri-linear interpo-
lations to integrate scatter dose to a single point,
iterated over 30 million points, resulting in hun-
dreds of billions of floating-point calculations. A
dosimetrist might repeat this entire process many
times during the formulation of a plan. The com-
putation time varies with the complexity of the
plan and may range from a few seconds to several
hours.

Since speed of an interactive application is very
important, optimization of this code was on the
critical path. However, far more important to us
initially than getting it fast, was getting it correct.
Using Lisp (rather than a more traditional imper-
ative language) helped in two ways. First, the
elegance of the language itself (its syntactic sim-
plicity and functional style) greatly eased the ini-
tial design and verification of the system. Second,
the highly-interactive nature of our vendor’s im-
plementation (Allegro Common Lisp from Franz,
Inc.) was of tremendous assistance in debugging
and testing.

Regarding the language itself, we were repeat-
edly impressed by the similarity of Lisp code to
mathematical notation. While in a formal sense
all programs specify Turing machines (or equiv-
alents like Lambda calculus), that specification is
especially perspicuous in the case of Lisp. We were
able to write initial Lisp implementations of sev-
eral components of our dose computation module
almost as direct transliterations from mathemati-
cal notation (flowgraphs and equations) to proto-
type working code. Verifying the correctness of the
implementation at this stage was also easy due to
the close correspondence between the mathemat-
ical specification and the functional style of our
initial Lisp code.

Our previous dose computation module was
written in Pascal and ran as a separate process,
using Unix interprocess communication (via Lisp
streams) to ferry data back and forth. The Pas-
cal code ran fast but was not completely correct.
There were certain configurations that produced
anomalous results, primarily unexplained points of
zero dose in regions where the physics (i.e., the for-
mula) clearly made that impossible. In ten years of
use and debugging we were never able to account
for (or fix) these anomalies. Our very first Lisp im-
plementation fixed the problem, and these anoma-
lies have never recurred since. (Other anomalies
have, but we have always managed to trace them
to easily fixed oversights and plain stupid mis-
takes.)



Of course, the initial implementation ran rather
slowly. The current version, now in clinical use for
about six months, runs 100 times faster. It is, as
far as we can tell, still correct. In fact, it is even
more correct, in that we later discovered several
points on which our implementation differed from
the specification or in which the specification was
ambiguous. Fixing them resulted in code which
now better represents our original intent than did
the first implementation.

The close correpondence between Lisp code and
other formal or mathematical styles of descrip-
tion was of great value during the optimization
phase of the implementation. We used relatively
straightforward source-to-source transformations
to speed up the code. Some were simple and
language-specific, like converting mapcar to do
(transforming functional application over repeat-
edly consed intermediate data structures to itera-
tive mutation of persistent state). Others were at
the algorithmic level, like replacing linear and bi-
nary search with constant-time lookup. Our table-
lookups, at the innermost levels of inner loops and
therefore the most time-critical, had to use search
because our represention of machine characteris-
tics involved non-uniform sampling (for example,
dense sampling at beam edge and sparse sam-
pling over flat regions). We converted search to
constant-time lookup by precomputing (at table-
load time) an access-vector that maps an input
value directly to the correct table entry.

While these transformations were easy to ana-
lyze mathematically (and we could therefore ver-
ify their correctness), there was always the chance
that subtle coding errors would go unnoticed.
That is where the interactive nature of the Lisp
environment (and our vendor’s extensions) really
shined. It was trivially easy to trace execution
paths, insert debugging printouts of critical val-
ues, gather timing and function-calling statistics,
and do myriad other test probe insertions into
the code to verify that optimization was not com-
promising correctness. We built several test jigs
that gathered large quantities of data from test
runs of different versions (code with varying lev-
els of optimization). These jigs enabled the au-
tomatic analysis of output from test runs so that
we could be sure that changes did not introduce
errors. Some of the jigs also did graphical dis-
play so that we could verify that various algo-
rithms were working correctly — this was especially
valuable in studying two components: a polygon-
clipping routine (which clipped block outlines to
the radiation portal) and the spatial integration
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used for calculating scatter dose under the blocks.
The interactive nature of Lisp (full-featured in-
terpreter combined with fast optimizing compiler,
trace features, data inspector, etc) made the rapid-
prototyping of these test jigs very easy.

After optimizing at the algorithmic level we did
code tuning via declarations. The ANSI standard
allows and our vendor’s product provides inlining
of arithmetic functions and array accessors. Care-
ful and liberal sprinkling about of floating point
declarations and the use of type-specific arrays to
hold floating point numbers resulted in consider-
able speedup. On occasion this strategy required
passing extra variables as control flags — where a
function might return data of more than one type,
we had it return them via separate variables and
used a flag to indicate which was the “real” value.

Our next effort was to improve the efficiency of
memory allocation for floats. In this phase we di-
rectly confronted limitations of the design philoso-
phy of Lisp. There is no doubt that many features
of the language (like dynamic memory manage-
ment, typed data objects, generic functions, au-
tomatic method dispatch, and presence of source
terms such as symbols naming variables in the ob-
ject code) greatly facilitate the construction of re-
liable and robust programs. Once the program is
debugged, some of them can be compiled away for
production versions. But others cannot. The sin-
gle biggest obstacle we encountered was the boxing
of floating point data (that is, the representation
of floats as pointers to an allocated chunk holding
the actual datum bit pattern).

Our application computes many billions of float-
ing point values during a run of the dose calcula-
tion. Only a relative few of them survive as fi-
nal outputs — the vast majority become garbage
soon after creation. This is the ideal situation
for generational garbage collection (which is what
our vendor’s implementation uses). However, even
though generational collection is currently the best
method of managing storage, we still encountered
a huge cost in allocating those billions of floats and
in chasing pointers to pass their values to arith-
metic primitives. In our attempts at speedup we
studied both vendor-specific and generic Lisp-level
techniques.

The vendor-specific technique we tried was
the use of argument and return-value type dec-
larations enabling the Franz Allegro compiler
to produce code that passes floats directly to
user-defined functions rather than by allocat-
ing a boxed value. It worked well (almost 10



times speedup on certain numerically-intensive
routines), but ultimately we decided to abandon
this technique as too system-specific. It did not
even work in the Linux (as opposed to HP-UX)
version of the Lisp from the same vendor — and we
hope to run our application with Lisp products
from other vendors.

Also, even if we could pass unboxed floats di-
rectly to certain user-defined functions, the seman-
tics of the language will not allow this technique
for Lisp primitives themselves. For example, sup-
pose we want to pass a list of a few floats from one
function to another. The Lisp primitive does not
know where its inputs came from or are going; it
must generate a list of cons cells each pointing to
a fully-boxed float. There is no way we can tell
Lisp that we don’t care about full run-time type
tagging because we are just going to hold on to this
list for a few nanoseconds before destructuring it.
Of course, we can obtain that effect by passing the
float values in a specialized float vector, but that
still requires all the overhead of array construction
and the associated memory management.

We obtained almost equivalent speedup (a fac-
tor of about 8 rather than 10) and accomplished
the same goal (elimination of float boxing) with a
portable generic Lisp solution. We pass float ar-
guments and return values via a specialized float
vector. The Lisp standard includes arrays of spe-
cialized types (like single-float). While not
required by the standard, all implementations of
which we are aware can implement those special-
ized arrays by storing the acual bit patterns in
the array slots rather than by indirecting through
pointers. Thus the boxing problem goes away.

Or at least, it almost goes away. Now we have
to stuff all the float arguments for a function into
a vector before calling the function, and the func-
tion must dereference them. When it starts up, ei-
ther it must copy these values into local variables
or it must indirect through the vector every time
it needs to access one of them. This overhead is
unavoidable, given the semantics of the language
(or so it seems). If one is to get the benefits of
generational garbage collection, one must be will-
ing to let the garbage collector move data around
during a computation. That means that the com-
piler cannot optimize memory references to data
in arrays by generating memory accesses directly
to the cell holding the data. That cell is part of
an array that the garbage collector may move at
any time; therefore, it must be accessed at least
by indexing from the pointer to the array itself.
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This seemingly minimal overhead of one memory
indirection per data access, multiplied by billions
of accesses, becomes a significant cost.

2.5 Image projection: another opti-
mization challenge

Prism recently added the ability to view a projec-
tion of a set of CT images. A CT image represents
the X-ray density of a patient in a two dimensional
transverse cross-sectional plane. An example CT
image of an abdomen cross section is shown in
figure 3. An example projected image, through
a collection of cross sections of a head as a vol-
ume data set, can be seen in figure 10. Thus, a
set of these CT images can be used to represent
a 3-D grid of density information. For treatment
planning, it is quite useful to be able to visualize
this data from arbitrary viewpoints. For exam-
ple, by projecting the CT data to the viewpoint
of a radiation beam source, dosimetrists are able
to use this data to guide adjustments to the beam
geometry. In Radiation Oncology, this generated
image is commonly called a Digitally Recomputed
Radiograph (DRR) because it simulates an X-Ray
(radiograph) of the patient.

2.5.1 The DRR Algorithm

The implementation of a DRR calculation is sim-
ilar to a ray tracing algorithm. The algorithm is
as follows:

For each pixel in the resulting DRR image,

1. Calculate the ray from the virtual camera
point to the current pixel.

2. Trace the ray through the 3-D grid to find the
CT image voxels which intersect the ray.

3. Calculate the total density for the current
pixel by summing the values of the inter-
sected voxels weighted by the length of the
ray within each voxel.

Our implementation is very close to the algo-
rithm presented by Siddon [19] except that we do
not require a constant distance between the CT
images in an image set. This flexibility is useful
when a high degree of precision is required around
the treatment area and resolution requirements
are much lower further from the treatment area.
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Figure 10: A digital reconstructed radiograph generated from a collection of cross sectional X-ray CT images

2.5.2 Performance tuning

It is important to note that this involves a signif-
icant number of accesses to the 3-D image grid.
Thus, efficient array access is an important fac-
tor for performance. To gain efficient array access
in Lisp, the compiler must know both the type
of data in the array and the size of the array at
compile time. Of course the compiler must also
have its optimization settings enabled. This sim-
ple change alone made the code about 10 times
faster by inlining array references.

The code optimization for this module is not yet
complete and there are still a few options to pur-
sue. For example, there is still potential optimiza-
tion to be done with respect to cache coherency
because the 3-D dataset is rather large (tens of
megabytes).

2.6 Planning target volumes: a rule
based component

As part of the advance toward true three dimen-
sional radiation therapy treatments, the Interna-
tional Commission on Radiation Units recently de-
fined an entity known as the planning target vol-
ume (PTV) [20]. While a physician should ideally
be able to outline a tumor volume on a patient’s
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treatment planning CT (cross sectional image set)
and then irradiate only that volume, certain real-
istic constraints make this impossible. During a
radiation treament, the tumor may move relative
to its location on the CT images due to physiologic
causes such as respiration, swallowing, stomach
motion, etc. Additionally, since treatments are
given daily over a period of weeks, further error
is introduced from variations in daily treatment
set-up. Consequently, in order to ensure treating
the entire tumor volume to full dose, an expan-
sion of the tumor volume is defined which takes
into account these intra- and inter-treatment un-
certainties. This larger volume, illustrated by the
dashed line in Figure 11, is the planning target
volume.

2.6.1 The PTV model

The Planning Target Volume Tool [21] included in
the Prism system generates a PTV using a knowl-
edge base, inference engine, and volume expansion
algorithm. It relies on the provided tumor volume
as a basis for expansion, and uses symbolic (cate-
gorical) information about the tumor location, his-
tology, stage, and extent of patient immobilization
to derive the parameters of the expansion.

Planning target volumes are generated by en-



Figure 11: Tumor volume outline in one plane
(solid line), together with surrounding PTV
(dashed line).

larging the tumor volume cylindrically by a margin
A in three dimensions. A is the root-mean-square
combination of the values of several components.
Component types are: patient motion (7py,), tu-
mor motion (74, ), and day to day setup variation

(Tsu)-
A =1.614 x \/72, + 78, + T2,

The values of these components are determined
by information about the tumor, patient organs
and other aspects of the patient’s condition. This
information is mostly symbolic rather than nu-
meric or geometrical. The types of information
used to describe the tumor and patient follow:

T stage: This label, one of the four levels, T1,
T2, T3, T4, indicates the extent of the pri-
mary tumor. The categories are related to
size but have qualitative significance towards
prognosis and treatment strategy.

N stage: Similary the extent of apparent involve-
ment of regional lymph nodes is graded, NO,
N1, N2, N3.

Cell type: The cell type is related to the tissue of
origin of the tumor cells, and therefore the al-
lowable values may depend on the tumor site.
Some typical cell types are: squamous cell,
large cell, small cell, adenocarcinoma, lym-
phoepithelioma.

Immobilization device: This refers to any me-
chanical device that will be used to restrict
the patient’s movement during treatment,
and to aid in reproducing the precise posi-
tioning of the radiation beams each day of
treatment. Devices include: mask, alpha cra-
dle, plaster shell, none.
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Region: This gives some guidance, for lung tu-
mors, about how much internal motion to ex-
pect. Regions of the lung include: hilum,
lower lobe, mediastinum, upper lobe.

Much of this information is site specific. The
current version of the tool supports only two
anatomic sites, lung and nasopharynx, but it is
only a matter of gathering more clinical and phys-
ical data to add support for other sites.

2.6.2 Implementation of the PTV tool

The PTV tool is implemented as a Common Lisp
function within the Prism system, that produces
radiotherapy planning target volumes given infor-
mation about a patient and the patient’s tumor.

The relations between the patient and tumor in-
formation and the magnitudes of the margin com-
ponents are represented by rules. A rule inter-
preter uses the rules and input data to determine
the appropriate margin component values.

(define-rule LUNG-ALPHA
(AND (type-p 7tumor-instance tumor)
(within-p 7tumor-instance lung)
(type-p 7pat-immob immob-dev)
(immob-p 7pat-immob alpha-cradle))
->
(AND (margin setup-error (0.6

0.6 0.
(margin pt-movement (0.2 0.2 0.

Figure 12: A sample rule relating patient and tu-
mor information to a value for an expansion pa-
rameter

The PTV is generated by expanding the convex
hull of the contoured tumor volume by the amount
A computed after all the applicable rules have
been used to determine the 7 components. This
model and implementation were tested by com-
paring the generated target volumes with PTV’s
drawn by experienced radiation oncologists, using
standard expert system evaluation methods [22].
The model is sufficiently effective to be useful as
an aid in routine treatment planning.

3 Results and discussion

Having four years of real world clinical use of
Prism, as well as experience with maintenance and
enhancement, we can report that in general the
choice of Lisp as the development language has



worked out very well. We were able to build a
richly featured application and tune it for high
performance, with a relatively small amount of ef-
fort. While we have not compiled detailed statis-
tics on the discovery and repair of programming
errors (bugs), in general they have not been more
frequent than in our previous work, and they have
been much easier to find and fix than in the Pascal
programming environment.

3.1 Adequacy of features of Prism

In addition to basic 3-D radiation treatment
planning capabilities, the Prism system includes
unique features, and has some characteristics that
are not found in other RTP systems:

1. dynamic random access - there is no enforced
policy for the order of treatment planning
steps,

2. built-in capability for artificial intelligence
tools, including a rule interpreter [23] provid-
ing support for experimental development of
automated radiation treatment planning al-
gorithms [24],

3. a software tool for automatically generating
a planning target volume from a physician
drawn tumor volume [21],

4. more explicit attention to quality engineering,
better documentation of system behavior and
internals,

5. more adaptability, for integration of new
modules and outside software, for example,
integration of an on-line digital anatomy at-
las [25].

6. more adaptability, with respect to diversity
of radiation treatment machine types, and in-
tegration with computer controlled radiation
treatment machines.

3.2 Performance

The two critical areas where run-time execution
speed is important are the updating of the graphic
displays and the dose calculation. In both areas
we achieved acceptable performance relative to our
experience with a more conventional programming
language and implementation.
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On a typical RISC workstation, Prism provides
adequately responsive performance in most cir-
cumstances. With a few cross sectional views dis-
played the user can operate the beam control di-
als and rotate the radiation beams, getting up-
date rates of 5-10 updates per second, even with
all the pixmap copying, and with image display in
the background. The projected beam’s eye views
update slightly slower, but still fast enough for in-
teractive use. The one area where performance
lags is the gray scale mapping of images and the
calculation of projected (DRR) images. We know
from examining the code that there is still room
for performance improvements there, and we in-
tend to pursue this.

Prism does not have surface-rendered displays
of organs, etc. but this is important and we are
pursuing this now. Typically applications achieve
high performance in 3-D surface rendering by us-
ing specialized libraries such as OpenGL. This is
under investigation but it is not obvious whether
this will really be better than writing reasonably
efficient implementations of standard tiling and
rendering algorithms in Lisp.

Much as CLX provides a reasonably efficient in-
terface to 2-D graphics in the X environment, it
would be a tremendous contribution for someone
to provide a highly tuned implementation of 3-
D graphics for Common Lisp, especially one that
can flexibly take advantage of graphics accelera-
tion hardware and still be compatible with X. This
involves to some extent the current debate over
the future of extensions to X such as PEX for 3-D
graphics.

It must be said that higher performance could
be obtained by leaving the X environment and us-
ing a system that leverages local hardware. The
importance of network operation of Prism is suf-
ficient that we will not pursue this path. This is
not a language issue.

Our current Lisp implementation of the dose
calculation runs about 20 percent faster than did
the old Pascal version, and it is 100 percent more
correct.

3.3 Project management

We have gained experience with software engineer-
ing methods that can greatly reduce the effort in-
volved in building a treatment planning systern.
The use of abstract behavioral types and medi-
ators, with Entity-Relationship modeling, helped
keep the design of Prism at a high level and helped



untangle many possible design traps. We used
both a waterfall approach and some amount of
bottom-up design (building small generic tools
that seem useful). All this and the use of Lisp
appear to have saved a lot of time and effort.

This is important, since the cost of software de-
velopment can be enormous, and for commercial
products the cost of an RTP system product is
dominated by the cost of the software. Commer-
cial RTP products that include software and a sin-
gle Unix workstation are typically in the $200,000
to $300,000 price range. Informal conversations
with other developers indicate that these products
represent source code on the order of 300,000 to
500,000 lines of C code, and can involve as much
as 50 person years of effort.

Prism was built with relatively little effort and
costs very little to maintain and enhance. The ini-
tial release of Prism in July 1994 was about 45,000
lines of code with about 7 person years of effort,
including the time it took to develop specifica-
tions, do testing, and write documentation. Since
then maintenance and further development repre-
sent about another 4 person years. Prism today
has grown only to about 52,000 lines of code but
has many more features than the 1994 version. Of
this, the SLIK user interface toolkit, the part that
is completely generic, is about 9,000 lines of code.
The SLIK programmer’s manual is 3,000 lines of
IATEX source (60 pages when printed).

The documentation for Prism includes a func-
tional specification, a programmer’s guide to in-
ternals, the dose computation specification men-
tioned above, and a User Manual, totalling about
23,000 lines of KTEX source in addition to the
SLIK manual.

3.4 Lisp as an industrial strength
programming language

Lisp has features and characteristics that make it
radically different from all the more familiar pro-
gramming languages. These features are impor-
tant in writing RTP software; they are not just
exotica that artificial intelligence researchers play
with. In Prism the following features proved to be
especially useful:

e Run-time types: Lisp can determine the type
of a piece of data at run-time, and act accord-
ingly. We took advantage of this to make the
storage and retrieval of RTP plan data very
simple.
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e Multi-methods: In the Common Lisp Object
System, methods for generic functions can be
selected at run-time based on the type of any
number of arguments. This is used in many
places in Prism.

e Lexical closures: Lisp code can create new
functions while the program is running. This
accounts for much of the modularity and com-
pactness of the Prism code.

What would really be nice is a world in which
one could reprogram the semantics of the language
with the same flexibility with which we can re-
program the syntax of Lisp. That way, during
program development, debugging, and testing we
could use all the safety features that Lisp includes
(data typing, garbage collection, error checking).
Once convinced that the code works correctly, we
could tell the compiler (by changing a few local
declarations) to assume the correctness of certain
invariants and to generate code which thereby runs
blazingly fast.

Production Lisp compilers partially achieve this
goal. By declaring types of local variables, most
compilers will dispense with type checking and
will inline arithmetic operations. It would be nice
if such declarations could enable the Lisp sys-
tem to dispense with type checking and boxing of
non-immediate data (such as floats) when passed-
to/returned-from not only user-defined functions
but also system primitives. If the user passes a
fixnum to a function whose argument is declared
to be a float, that user must expect to pay the price
of a bus error or segmentation violation. But if
the code is correct, that code might run ten times
faster (ours did).

On the old Lisp Machines one could partition
memory into areas, and thereby control where
data were allocated. A common efficiency hack
was to allocate temporary data in an area that
could be reset periodically (when safe, reset the
free pointer to the beginning of the area). The
result was intantaneous garbage collection (faster
even than generational). Of course, this technique
sacrificed safety — programming errors easily could
crash the system. But this is the situation C pro-
grammers are in all the time!

It would be nice to incorporate such pro-
grammable semantics into the standard. That
would give Lisp programmers the best of both
worlds — the safety, elegance, and purity of Lisp
combined with the raw speed of assembler or C.
Of course programmers would have to remain vig-



ilant, but it is always easier to be vigilant and to
program correctly when there is a safety net avail-
able (by turning optimizations off). Users of most
traditional languages have no safety net, whether
they want it or not.

It is very unusual to write large programming
projects in radiation oncology or radiology in pro-
gramming languages other than the mainstream
(FORTRAN, C, perhaps C++). The Lisp pro-
gramming language in particular has had a repu-
tation as a specialized tool for artificial intelligence
research, unsuitable for serious medical comput-
ing. Modern Lisp compilers and systems are, how-
ever, highly developed, and experience with Prism
shows that Lisp is a powerful and useable general
purpose programming language. Prism’s interac-
tive performance is acceptable for clinical use, and
for speed critical operations it is comparable to
programs written in C. The Prism dose computa-
tion code achieves performance fully comparable
with other more conventional languages. The use
of advanced design concepts that saved us years
of development effort did not adversely affect the
performance of the resulting system. Lisp is no
longer part of the exotica of the past, but a well-
supported environment for building powerful radi-
ation oncology software.

4 Future directions/work in
progress

Many enhancements to Prism, and research
projects using Prism, are under way. We describe
here only a few, the implementation of a medi-
cal image server using TCP/IP, a network client
interface to an Internet medical anatomy knowl-
edge resource, and the development of a macro
language for radiation therapy planning systems.

The Prism DICOM-3 medical
image server

4.1

The application and presentation layer network
protocol developed by the American College of Ra-
diology (ACR) and NEMA for interchange of med-
ical image data between imaging computer sys-
tems is called DICOM-3 [26]. It is an object ori-
ented model for medical images and related en-
tities as well as an encoding scheme and com-
munications protocol that is designed to work in
several wide area network environments, includ-
ing TCP/IP. DICOM-3 is now supported by most
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manufacturers of computerized medical imaging
equipment.

The Prism DICOM-3 server is a facility for re-
ceiving images and image sets from imaging de-
vices such as CT (Computed Tomography) or MRI
(Magnetic Resonance Imaging) scanners, and stor-
ing them in the image database of the Prism RTP
system for subsequent use in treatment planning
with Prism as described above. We are imple-
menting it also in Common Lisp, to take advan-
tage of the fact that the image objects and image
sets that the server receives are already well mod-
eled and supported in existing Prism code. We
are confident that the performance and robust-
ness will be adequate. Our experience and that of
others with the Common Lisp Hypermedia Server
(CL-HTTP) from the MIT AI lab [27] already has
demonstrated the effectiveness of writing socket
based TCP/IP network applications in Lisp.

The Prism DICOM-3 server design follows the
standard model for a TCP/IP connection-oriented
server [28]. The overall flow is shown in figure 13.

The names in the figure correspond to the stan-
dard BSD socket library calls.

Other DICOM implementations have been
made available including full source code and
documentation, for example the CTN project at
Mallincrodt Institute of Radiology [29]. These are
very large programs and suites of programs and li-
braries written in C. They are difficult to integrate
into other systems like Prism, and are not very
modular. We decided it would be more efficient
simply to write our own directly in Common Lisp.

The code in figure 14, together with an interface
to the BSD socket library (using a Lisp vendor spe-
cific foreign function facility), is a sketch of an im-
plementation of the server structure in figure 13.
Since some of the socket function names are al-
ready defined in Common Lisp, we used slight vari-
ations in those cases.

Although this project is not completed, it ap-
pears that our server will be very small and mod-
ular. The interfacing of Lisp code to the BSD
socket library was a simple application of the for-
eign function interface of the particular Common
Lisp system we are using. Although this part of
the code is not ANSI standard, it would be easy
to adapt to a different vendor’s foreign function
interface. The core, the DICOM-STATE-MACHINE
function, is vendor and system independent.
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Figure 13: Model for a TCP/IP based DICOM-3
server

4.2 The Digital Anatomist

This section describes work in progress on an on-
line anatomy reference system for radiation treat-
ment planning.

4.2.1 Use of anatomy knowledge in RTP

Delivering enough radiation to kill a tumor while
minimizing damage to surrounding tissue requires
knowing the precise locations of all anatomical
structures nearby the tumor site, and although
there are generally plenty of CT and MRI patient
scans of the site availiable, certain soft structures
often do not show up well using either imaging
technique, forcing a dosimetrist to infer their loca-
tions from the structures that are visible and from
his own knowledge of anatomy. Because of the dif-
ficulty involved with making such inferences with
any degree of accuracy, the dosimetrist will often
refer to an anatomy atlas book. Unfortunately,
this book will have all of the usual drawbacks of

20

(defun DICOM-SERVER (port glem)
(let ((local-addr (make-sockaddr-in))
(sock (SOCKET *pf-inet*
*sock-stream* 0))
(remote (make-sockaddr-in))
descriptor)
(if (< sock 0)
(error "Cannot create socket"))
(setf ;; set up local socket params
(sockaddr-in-addr local-addr)
*inaddr-any*
(sockaddr-in-port local-addr)
(tcp-port-number port)
(sockaddr-in-family local-addr)
xaf-inet*)
(if (< (BIND sock local-addr
x*sockaddr-in-lenx) 0)
(error "Bind failed for socket"))
(if (< (tcp-LISTEN sock glen) 0)
(error "Listen failed for socket")
(loop
(setf descriptor
(tcp-ACCEPT sock remote))
(if (< descriptor 0)
(error "Accept failed...")
(progn
(DICOM-STATE-MACHINE descriptor)
(tcp-CLOSE descriptor))))))

Figure 14: A sketch for a DICOM server

printed media: static content with a fixed organi-
zation and presentation style. As an alternative,
we are currently exploring how the use of an on-
line anatomy reference tool could help to improve
the process.

4.2.2 On-line anatomy information and
knowledge resources

At the University of Washington, the Structural
Informatics Group has an ongoing project known
as the Digital Anatomist in which repositories of
anatomical information are accessible to multiple
clients via a distributed framework. Although all
clients to date have been educationally oriented,
the use of a distributed framework implicitly en-
forces a strict separation between content and pre-
sentation, meaning that how a client chooses to
interact with its user is completely independent of
that client’s ability to retrieve information from
the Digital Anatomist’s databases. Add to this
a rich semantic network of relationships between
anatomical terms which allows the potential for in-
telligent searching, and the availability of a wide



variety of segmented anatomical data, and we
have an excellent foundation on which an online
anatomy clinical reference tool could be built.

Our ultimate goal, should the tool prove to be
useful, is to integrate it with Prism, making it
a natural choice to build it in Common Lisp us-
ing SLIK and CLX. Another incentive for using
Lisp was that most Digital Anatomist components
communicate with each other using a Lisp-like
command syntax [30, page 478].

4.2.3 Implementation experience

We implemented a prototype clinical reference in-
terface to the Digital Anatomist resources (the im-
age repository and semantic network of anatomic
terms). The prototype provides support for the
kinds of queries we believe would be useful in ra-
diation treatment planning. Radiation oncologists
in the department examined the prototype and
provided comments on the user interface, the use-
fulness of the functions, and the completeness of
the database. A fuller report of this project from a
clinical perspective is in preparation. Here we only
comment on technical implementation issues.

While things went smoothly for the most part,
one interesting problem did arise along the way:
how to display the GIF images stored in the Dig-
ital Anatomist’s image database when CLX pro-
vided support only for the XBM file format. Our
first idea was to look for source on the web that
could handle the decoding of GIF images, but the
source for every decoder we found was tightly cou-
pled with its respective program. Our next ap-
proach was to decode the images ourselves, but
this proved to be very difficult and inefficient due
to the GIF format’s use of LZW compression,
which required manual unpacking of bits since
our file system does not directly support open-
ing files using non-standard bit-length bytes. Our
eventual solution was to use an image process-
ing program called “ImageMagick” via Allegro’s
run-shell-command operating system extension
to Lisp. The “ImageMagick” program converts
the image into PPM format, which was trivial to
then decode using Lisp.

Our initial implementation of the PPM decoder
was correct but inefficient (a medium sized GIF
required about ten seconds to load) and required
refining. Our first refinement was to extract the
raster data from the file in one lump sum using
read-sequence instead of extracting one byte at a
time using read-byte. This reduced the load time
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to about two seconds. Next we inlined references
to the array in which the raster data had been
deposited, and this reduced load time to about
seven-tenths of a second, which was satisfactory
for our purposes.

As with Prism, using Lisp helped us to write
abstract, succinct, correct, readable code which
could be tuned for efficiency when necessary.
In addition, when we begin exploring intelligent
search, Lisp will be the perfect tool, both for com-
municating with the Digital Anatomist and for
the implementation and availability of search al-
gorithms.

4.3 A macro language for RTP

In 1977, when most medical physicists were strug-
gling to master simple graphic output devices like
the Calcomp pen plotter, Ted Sterling, then a
computer scientist at Simon Frazier University,
was already looking into visionary ideas for radia-
tion therapy planning software. Sterling proposed
[31] that powerful systems for RTP could be built
by first designing a macro language for RTP, with
primitives for body parts, radiation machines and
their functions. Prism is a step in this direction.
A future enhancement we are exploring is to carry
this out and provide a higher level macro language
that the user may create convenience functions
and other enhancements to Prism without having
to modify any code. There is no better environ-
ment than Lisp for this kind of work.

5 Conclusion

Our experience points to some straightforward
conclusions. We believe that the expressive power
of Lisp gives Prism a lot of functionality with a
small amount of source code. Using good soft-
ware engineering practices helped considerably to
reduce the amount of time to a deliverable prod-
uct. Performance of Prism in an interactive en-
vironment is satisfactory for use in a busy clinic.
If Prism can be used as an example, there is no
reason Lisp cannot be a mainstream application
development language.
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