
Radiation Therapy Planning: an Uncommon Application of Lisp �Ira J. Kalet, Robert S. Giansiracusa, Craig Wilcox, and Matthew LeaseDepartment of Radiation Oncology andDepartment of Computer Science and EngineeringUniversity of Washington, Seattle, WAAbstractWe used Common Lisp to build a complex andpowerful interactive graphics simulation systemcalled \Prism", for planning radiation therapy.Special features of Common Lisp that we used toadvantage include: lexical closures, the CommonLisp Object System (CLOS), and the CommonLisp binding to the X window system (CLX). Weuse events, indirect invocation and mediators toachieve modularity. Some of the components ofPrism are: a contoured volume editor, computedmedical images, a rule based function to generatetarget volumes, and a radiation dose computationfunction. To achieve fast 
oating point computa-tion in the latter, we applied both generic and ven-dor speci�c optimizations. The result is a systemthat is routinely used in the University of Wash-ington Cancer Center, by people with no program-ming expertise. Our experience shows that Lispis practical, powerful and e�cient for interactivegraphics, complex modeling and intensive 
oatingpoint computations such as radiation dose model-ing. Additional work in progress includes a med-ical image server and an interface to an on-lineanatomy atlas.Keywords: CLOS, events, modeling, graphics1 IntroductionWe designed, tested and are using in the Univer-sity of Washington Cancer Center a complex med-ical application of Common Lisp, the Prism radia-tion treatment planning system. Radiation treat-ment planning (RTP) systems provide modelingof the human body and radiation treatment ma-chines, analogous to computer-aided design sys-�Communications to: Ira J. Kalet, Radiation OncologyDepartment, University of Washington, Box 356043, Seat-tle, Washington 98195-6043 Phone: (206) 548-4107, FAX:(206) 548-6218, E-mail: ira@radonc.washington.edu

tems. Historically RTP programs been writ-ten for mainframe computers, time-sharing sys-tems, mini-computers with interactive graphics,and most recently window-based desktop worksta-tions. Radiation therapy planning projects havecontributed to developments in computer systems,in addition to having an enormous impact on thelevel of sophistication of radiation treatment itself.The Prism project demonstrates the e�ectivenessof using Lisp in a demanding production softwareenvironment.Radiation therapy directed at malignant tumorsinvolves aiming and collimating a radiation beamat the tumor in such a way as to deposit a largeamount of energy in the tumor and as little energyas possible to surrounding (healthy) tissue. Fig-ure 1 shows a typical radiation therapy machine.Radiation, such as X-rays (high energy photons),electrons, neutrons and other particle beams, cankill tumor cells by causing ionization of atoms inor around the cell, and in turn, this can result inmolecular bond breakage, i.e., damage to the DNAof the cell, or it can produce free radicals, activechemical species, which then attack the DNA. Ineither case, the goal of radiation therapy is mainlyone of solving an energy delivery problem, to di-rect as much radiation into the tumor as possibleconsistent with avoiding the healthy tissue.The remainder of this section describes the ra-diotherapy planning problem, the role of computersimulation, and a brief review of related work. Sec-tion 2 describes some of the design problems inthe Prism system, with attention to how we usevarious characteristic features of Lisp. Section 3discusses how e�ective these solutions are in lightof four years of experience using the system, �xingproblems discovered after deployment, and addingnew features. In section 4 we present brie
y ourwork in progress toward future capabilities.
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Figure 1: A radiation treatment machine, with a member of the UW sta� positioned as a patient would be,and a therapist to operate the machine. Once the patient and treatment machine are properly positioned,the therapist leaves the treatment room, then turns on the radiation beam, while monitoring the patient viaclosed-circuit television. This procedure is repeated for each treatment beam direction.1.1 The use of computers in radio-therapy planningA modern radiation therapy machine consists ofa high energy linear accelerator, producing X-ray(photon) beams or electron beams in the rangeof 4 to 25 million electron volts (MeV). The ma-chine has a lot of 
exibility to aim the beam andshape it in arbitrary ways. The radiation oncolo-gist would like to take advantage of this 
exibilityby designing a plan that achieves a curative dosein the target region while minimizing the dose tosurrounding tissues.The process of designing good radiation plansrequires the use of RTP systems. The basic stepsare:1. Gather clinical and physical data2. Decide general approach3. Select radiation type(s)4. Use computer simulation to con�gure radia-tion beams5. Verify feasibility

Two factors make radiation therapy e�ectiveand practical. Understanding these makes clearthe role of computer simulation as a step in thedesign of radiation treatment.The �rst factor concerns the physics of radiationbeams. For high energy photons, the maximumdose, or energy deposition, is not at the surface,but can be as much as several centimeters belowthe skin surface. This is illustrated by the graphof dose vs. depth in �gure 2.The second factor concerns the geometric capa-bilities of the radiation treatment machine. It ispossible to deliver the radiation by aiming the ma-chine in each of several directions, turning it on fora short time from each, so that the aggregate doseto the tumor is high, but the dose deposited inthe surrounding tissues is spread out, and there-fore lower.Figure 3 illustrates a two-dimensional cross sec-tion of a plan showing two radiation \beams" over-lapping to give this e�ect.Thus the problem of deciding how to treat thepatient is one of choosing directions, apertures,and relative amounts of radiation from some num-2



Figure 3: A simple radiation treatment plan cross sectional view
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Figure 2: Dose from a single radiation beam vs.depth in tissueber of radiation beams. A collection of radiationbeams thus speci�ed constitutes a plan.In �gure 3 there are lines showing isolevel con-tours for various radiation dose levels. These comefrom interpolation of a grid or array of computedvalues of radiation dose that would result from thespeci�ed arrangement of radiation beams. The

formulas used to predict the dose at any pointwithin a patient from any speci�ed radiation beamare partly based on principles of radiation physicsand partly empirical, interpolating measured datain standard test conditions. The re�nement andtesting of such formulas is a large and active areaof research in medical physics. A survey of theprinciples can be found in textbooks, e.g., Khan[1], and the particular formulas used in our RTPsystem are described in exhaustive detail in a tech-nical report [2]. We describe aspects of the imple-mentation of these formulas in Common Lisp herein section 2.4.1.2 A short history of RTP systemdevelopmentAs mentioned, methods are well known for com-puting the physical dose received anywhere in thebody from a given beam con�guration. However,there is no established method for solving the in-verse problem of computing a set of beam param-eters, given a desired dose distribution. In typi-cal clinical practice a dosimetrist (a person withspecial training and experience) uses an RTP sys-tem to display the geometry and dose distribu-tion. The dosimetrist looks for regions of inade-3



quate dose to the target and excessive doses to sen-sitive structures, and applies modi�cations thatwill correct the problem and thereby improve theplan. Therefore the \con�gure radiation beams"step above is an interactive generate-test loop.The importance of having powerful three dimen-sional radiation treatment planning software toolshas been evident for some time [3, 4]. Much recentwork has focused on enhancing the delineation ofanatomy [5, 6], and providing visualization tools[7].Early systems ran as teletype applications ondialup time sharing systems, then on dedicatedminicomputers with frame bu�er displays. As thecomputer and graphics hardware became fasterand cheaper, the medical physicists writing RTPprograms became more ambitious about the kindof interactive graphic displays they implemented.Through most of this period, from the late 1970'sthrough early 1990's, most emphasis was on ar-cane and clever features, rather than on softwarearchitecture.At the University of Washington Radiation On-cology Department our focus has been on soft-ware design, both to make the development pro-cess e�cient and to provide 
exibility in use andsoftware evolution. We previously developed twogenerations of systems that experiment with theorganization of treatment planning steps such asdelineation of anatomy, manipulation of radiationbeams, display of dose distributions, and produc-tion of output. The �rst system [8], which pro-vided two dimensional treatment planning, useda new modular design [9] that made the systemvery 
exible. Its menu system was easily modi�edor supplemented without changing the programsthemselves. It allowed the user to add or changeany data items in the treatment plan at any timerather than enforcing a sequence of operations onthe user. The second system [10, 11] provided highresolution display and allowed the user to put onthe screen multiple plots displaying plan and im-age data simultaneously. Integration with com-puter controlled therapy machines [12] has beenpart of the project from the beginning.These �rst two systems were written in Pas-cal, for DEC VAX computers running VMS. Thegraphic display was a Ramtek 9465 frame bu�er.It was di�cult because there are no facilities inPascal for de�ning abstract objects, i.e., classes,and for de�ning generic functions for those ob-jects. Although we created a workaround for ourRTP system, it was in
exible (it was di�cult to

add new object classes), and hard to understand,because the implementation had much code de-voted to object management and function dis-patch. This obscured the actual application, theradiotherapy objects and their operations. Evenin our earliest publication [8] we recognized thatLisp would be a promising language to use for ourdesign ideas. At that time, though, there was nowell supported Lisp system that could be used forour application.The emergence of Common Lisp as a standardand widely supported commercial product was aradical change. Common Lisp implementationsbecame available that had very e�cient compil-ers, support for the X window system (CLX, thede facto standard Common Lisp binding to theX protocol), facilities for application deployment,and an excellent standard object-oriented pro-gramming system, the Common Lisp Object Sys-tem (CLOS).The Prism system design emphasizes a previ-ously unimaginable 
exibility in the user interfaceand in the ability to incorporate arbitrary num-bers and kinds of radiotherapy related objects inthe simulation.A sample Prism screen is shown in �gure 4.2 Design ideas used in PrismPrism consists of a number of modular compo-nents, including a graphical user interface build-ing kit, an implementation of abstract behavioraltypes and relationships, a graphic rendering sub-system, a scheme for storing simulation data in�les for later retrieval and display, control pan-els for user manipulation of radiotherapy objects,special tools such as a rule based reasoning sys-tem, and a radiation dose computation compo-nent. We describe the implementation issues ofsome of these in the following subsections.2.1 SLIK: a lightweight GUI kitSLIK (Simple Lisp Interface Kit) is a graphicaluser interface tool kit written in Common Lisp,using CLOS (the Common Lisp Object System)and CLX (the Common Lisp interface to the Xwindow system protocol). The purpose of SLIK isto provide a facility for handling user interactionin an X window environment. It provides a mini-mal set of facilities for building real applications,including the usual set of user interface devices or4



Figure 4: A screen display from the Prism RTP system, showing control panels, medical images and otherobjects derived from them, as well as graphic representations of radiation beams.\widgets". It is not intended to completely hide allthe details of the X window system, but rather toencapsulate X event processing and provide somebasic user interface widgets.This limited goal is in contrast to more com-prehensive systems such as CLIM [13] and Garnet[14]. CLIM provides an abstract drawing modelthat can be realized on several window systems,not just X. However, CLIM does not provide thecompletely general desktop model of an applica-tion that can be made of multiple active windows.Garnet provides a comprehensive system for build-ing applications. It includes its own object sys-tem, an alternative to CLOS. At the time Garnetwas developed, CLOS was not highly developedor e�cient, but these considerations are moot at

present, with e�cient and complete CLOS imple-mentations coming standard in Common Lisp sys-tems from most sources. Garnet is large, a con-sequence of providing a lot of capabilities. Oneinteresting aspect of Garnet is the provision forconstraints. These are important in interactive ap-plications that have dynamically interacting com-ponents. In SLIK such constraints can be imple-mented by using abstract behavioral types, events,and mediators [15]. In Garnet, only \one-way"constraints are supported, but the event/mediatorstrategy used in SLIK is more general as it sup-ports bidirectional constraints and can also repre-sent other kinds of behavioral relationships.The event scheme used in SLIK is not relatedto X window system event dispatching. In the5



SLIK code X window system events are handledindependently (and invisibly to the application).SLIK is not targeted for a particular windowmanager. SLIK widgets are very spartan, hav-ing no fancy shading or style such as that typicalof Motif [16]. Future implementations of SLIKmay change the appearance of the devices, so theyhave a more polished appearance, but the pro-grammer's interface will not change.SLIK provides three facilities for the interfacebuilder: a collection of user-interface objects (di-als, sliders, control panels, graphical pictures ofdata, etc.), a function for dispatching X windowevents to the objects that need to act on them,and a protocol for the objects to interact with eachother and with user application code.The objects in SLIK that are available for use bythe interface builder (programmer) are the typicalGraphical User Interface (GUI) objects found inmost interface tool kits. They are implementedas instances of a class hierarchy. This provides astraightforward way to add new kinds of objects.The frame is the base class that encapsulates alot of X details, and is able to handle an X eventin its window. The kinds of X events that frameshandle include pointer entry and exit, pointer mo-tion within the frame's window, button press andrelease, keystrokes, and window exposure.A frame may be a simple control such as a dialwith a pointer, a compound control such as a di-albox (which combines a dial and a textline), a di-alog box which waits for input, or a control panelof your own design, a frame with other frames ar-ranged as you wish in the control panel window,possibly including graphic illustrations. A controlpanel may have smaller control panels as its com-ponents, as well as individual controls.A picture is a frame that contains graphicaland/or text information that is part of the appli-cation, e.g., a graph of some data or an image, ora 3-dimensional rendering of some physical object.A picture can also respond to X events { for ex-ample, the picture might include \control points"that can be grabbed so the object may be pulled,stretched or rotated. The SLIK package includessupport for several types of \control point" ob-jects.2.1.1 Events and mediators: functions as�rst class objectsWithin the SLIK tool kit, components may needto notify other components when things change or

events occur. For example, when a dial pointerin a dialbox moves, a text representation of thedial setting should be updated, and vice versa.Also, in the application itself, there will be in-teracting components. A dial may be attachedto some physical object in a simulation, for ex-ample, and when the dial changes, the simulationpictures must update. One way to handle this isto code explicitly this interdependence of behaviorin the objects themselves. This explicit invocationleads to large tangled systems. Object orientedprogramming languages do not avoid this prob-lem, as explicit mention of particular objects byother objects, as well as generic function names,is still required. Even implicit invocation is notsu�cient as this just reverses the dependencies.Instead we use abstract behavioral types and medi-ators [17], where the behavioral relationships be-tween objects are external to the description ofthose objects.An abstract behavioral type (ABT) de�nes aclass of objects in terms of the operations thatcan be applied to the objects and in terms of theactivities or events the object can announce. OneABT instance can observe and respond to the ac-tivities of another by registering one of its own op-erations with an activity (event) in the interfaceof the other ABT. This provides a mechanism forone or more objects to be noti�ed when a sourceobject announces an event. The announcementor event interface is part of the object's interfaceto the surrounding, and not an external device orglobal variable.Abstract behavioral types are implementedin SLIK by providing events, announcement ofevents, and mechanisms for registering interest inevents. SLIK objects use this mechanism for inter-action with each other in addition to providing anevent interface to the applications that use them.The attribute accessors and other functions of aSLIK object provide the usual object-oriented wayin which external agents act on the object. Eventsprovide a way for other objects to act in responseto the announcement of an event associated withan object.In SLIK, an event slot of an object is just an as-sociation list of (target, action) pairs. The targetis the object that registered interest in the event,and the action is a function (symbol, function ob-ject or lexical closure) to be called when the eventis announced. As entities in the running systemregister, they simply add a pair to the list, andas they unregister, the pair is removed. An an-6



nouncement simply is an iteration over the list,calling the action function of each pair, passingto it the announcer and the target, and any otheruseful information. The complete code is shownin �gure 5.(deftype event () 'list)(defun make-event () nil)(defmacro add-notify (party event action)"ADD-NOTIFY party event actionAdds the party, action pair tothe specified event."`(setf ,event(cons (list ,party ,action)(remove ,party ,event:test #'eq :key #'car))))(defmacro remove-notify (party event)"REMOVE-NOTIFY party eventremoves the entry for party in event."`(setf ,event(remove ,party ,event:test #'eq :key #'car)))(defun announce (object event &rest args)"ANNOUNCE object event &rest argsapplies the action part of each entryto the party part of each entry."(dolist (entry event)(apply (second entry)(first entry) object args)))Figure 5: The event interface implementationAn example of an ABT is illustrated in imple-menting objects that include variable numbers ofelements. The mathematical notion of a set is thenatural starting point. The idea of a set can besupplemented with events that announce when anelement is inserted or deleted, thus making the in-teraction of the set with other objects straightfor-ward and consistent with the rest of the tool kit.SLIK includes a small package, the collectionspackage, that implements the collection, anABT that provides this extension of the idea ofa set. An excerpt of the implementation is shownin �gure 6.The basic type, event, provides a simple one-

(defclass collection ()((elements :accessor elements:initarg :elements:initform nil)(inserted :accessor inserted:initform (make-event)):documentation"Announced when an element is inserted.")(deleted :accessor deleted:initform (make-event):documentation"Announced when an element is deleted.")))(defun insert-element (el coll&key (test #'equal))"INSERT-ELEMENT el coll &key testinserts el into collection coll if notalready present. The new element is addedat the end, not the front of the list."(unless (member el (elements coll):test test)(setf (elements coll)(append (elements coll) (list el)))(announce coll (inserted coll) el)))and more...Figure 6: An excerpt from the implementationof collections, mathematical sets with behavioradded.way interface for implicit invocation. In SLIK, aswell as in other applications, more complex rela-tionships are sometimes required. An example ofsuch a relationship is the maintenance of a one-to-one relationship between two sets, e.g., a set of ob-jects in a simulation and the set of control panelsby which the user can manipulate them. Anotherexample is the case where an attribute of one ob-ject must be kept consistent with an attribute ofanother object, a constraint relationship. Imple-menting this with events does not avoid the pos-sibility of a circularity or in�nite loop.We implement these relationships by construct-ing additional objects we call \mediators". Thepurpose of a mediator is to explicitly and exter-nally express these complex relationships ratherthan embed them in the design of the related ob-jects. This makes the objects themselves moremodular and makes it easy to understand how therelationships work. In some cases, it becomes pos-sible to describe a family of relationships, and thus7



reuse the mediator code as well as the code forthe object. Behavior abstraction separates the be-havior of an object from its use in more complexstructures. Mediators explicitly provide the con-nections between interacting objects. An exampleuse of mediators, that maintains consistency be-tween sets of objects and the set of views thatdisplay them, is shown in �gure 7.(defclass object-view-mediator ()((object :reader object :initarg :object)(view :reader view :initarg :view)))(defmethod initialize-instance :after((ovm object-view-mediator) ...)(add-notify ovm (refresh-fg (view ovm))#'(lambda (med vw)(draw (object med) vw))) ...(defclass object-view-manager ()((obj-set :accessor obj-set:initform (make-collection))(view-set :accessor view-set:initform (make-collection))(mediator-set :accessor mediator-set:initform (make-collection) ...(defmethod initialize-instance :after((ovm object-view-manager)&key mediator-fn ...)...(add-notify ovm (inserted (obj-set ovm))#'(lambda (md oset obj)...(dolist (vw (elements(view-set md)))(insert-element(funcall mediator-fn obj vw)(mediator-set md)))))(add-notify ovm (inserted (view-set ovm))#'(lambda (md oset vw)...like above...Figure 7: Excerpt of code that implements theobject-view mediator and the object-view man-ager.The object-view mediator in �gure 7 simply con-nects an object with a view in which it appears.When the view announces its refresh-fg event,the object is redrawn in the view. There is nothingspecial here about using a lexical closure.Since the number and kind of objects can changeduring the course of simulation, as well as thenumber and kind of views, we need a mediator (theobject-view manager) that creates and destroys

object-view mediators as necessary, i.e., when anobject is inserted or deleted in the set of objectsor a view is inserted or deleted in the set of views.Since the kind of mediator needed might be morespecialized than the general object-view mediatorhere, i.e., it may vary with the kind of object setor view set, the object-view manager must use alexical closure to capture the mediator construc-tor function from the lexical environment, whenregistering an action with either of the respectivesets.Because the code is perfectly general, it worksanywhere you need such a relationship, and allthat is needed in each place is to pass the rightobject-view mediator constructor function as a pa-rameter to the object-view manager constructorfunction. Got that?This is particularly cute, because the local con-text being captured is a function, mediator-fn,not just a variable. It's compact, works reliably,and is not nearly as hard to trace as it looks.2.2 The graphics pipeline: the useof CLOS multimethodsPrism uses a pipeline design to implement 2-d and3-d graphics in the X window system environment.In order to achieve the e�ect of gray scale im-age display and color graphic overlay planes likethe old fashioned frame bu�ers, while being ableto run on a minimal 8-bit display, Prism does3-d to 2-d projection in software, and also com-putes a 128 gray level image from the original16 bit image data, then adds the color graphicsto the pixmap containing the image. Althoughthis design does not give the highest performance,and does not leverage any 3-d graphics accelera-tor hardware that might be present, it achievesmodularity, ease of adding new objects, and espe-cially ease of adding hard copy outputs to variousdevices (currently HP-GL and PostScript are sup-ported).Graphic objects and images are handled di�er-ently in order to deal e�ectively with a limitationof the X window system and the use of an 8-bitdisplay. Graphic objects include any object in thesystem which has some graphical representationand may be depicted in a Prism view. These in-clude beams, tumors, anatomy, anatomical land-marks, seeds, textual annotation, and locator bars.Images are typically selected or derived from a setof cross sectional images of the patient's body, forexample, a Computed Tomography (CT) study.8



(CT images are computed from X-ray projectionsthrough a cross section of a patient's body.) Aview contains a SLIK picture, with a CLX pixmapand a CLX window. The window appears on thescreen and the pixmap (referred to here as the pic-ture pixmap) is set to be the CLX \background"of the window.2.2.1 Pipeline componentsPrism uses caching of intermediate graphical datastructures to enhance the e�ciency of drawing,and employs double bu�ering to ensure that aseries of redrawing operations appears smoothand 
icker free. The purpose of this \graphicspipeline" is to be able to update the window onthe screen e�ciently and without the 
icker thatmight appear if it were erased and redrawn withsubstantial delay in between those two operations.The pipeline also serves to separate image dataand graphic overlay data, while providing the op-tion to perform grey-scale transformations on im-ages before displaying them. Figure 8 illustratesthis scheme.So a view contains a foreground, which is a listof graphic primitives , and a background, which isa pixmap separate from the SLIK picture pixmap.A graphic primitive is a representation of thedrawable data corresponding to an object, in aform suitable for input to CLX primitive drawingroutines such as clx:draw-lines. Graphic prim-itives are elemental graphic types such as text,polygons, disconnected line segments, representedin screen coordinates. The background pixmapcontains an image to be displayed as the back-ground of the view.The sequence of operations that lead to displayof data in a view consists of:1. From the image data, compute the back-ground pixmap,2. Transform the object data from real spaceinto graphic primitives, which are then storedin the foreground list.3. Copy the background pixmap containing im-age data to the picture pixmap associatedwith the view (or set the picture pixmap toall black pixels if no image is to be displayed).4. Draw the graphic primitives into the picturepixmap.5. Copy the picture pixmap into the picture win-dow (or alternatively erase the window |

since the pixmap is the window backgroundits contents will appear in the window on era-sure).The generic function draw implements some ofthese operations. The draw function takes two re-quired arguments, an object to draw and a viewin which to draw. Three sets of draw methodsare used to display graphical information | onethat updates the graphics cache (graphic primi-tives) derived from the graphic objects, one thatgenerates or processes images (or sets of images)to �ll the background pixmap, and one that writesthe contents of the cache into the part of the viewthat gets displayed. The draw methods for imagesupdate the view's background pixmap with a CLXimage derived from the Prism image data and theview speci�cations.It appears in this design that the pipeline ismemory intensive, and there is a lot of overheadbecause pixmaps are copied wholesale on eachview update, even though in many situations onlya single object's graphic rendition needs to bechanged. In practice, copying pixmaps is an oper-ation that typical graphics hardware performs ex-tremely well, and it is optimized in many X serveroperations. If the X server caches pixmaps in theserver or the hardware, this provides very impres-sive update rates when running Prism on a hostthat is remote from the display. In a demonstra-tion using a display at the University of Chicago,running Prism on a system at the University ofWashington, we were able to get Prism to do sev-eral updates per second, even though the Prismprogram was running on a host computer almost2,000 miles from the display computer.2.3 Storing objects in �les: Lisp,CLOS and MOP make thingsgenericPrism includes functions that read and writeASCII �les, with text representations of objectssuch as patient cases. The text representation forall objects follows a general template, based onthe idea of keyword-value pairs. Printed represen-tations of these class instances and associated dataare written to and read from �les by two functions,put-object and get-object respectively.A design goal for this �le storage scheme was tohave �les that could be manipulated with an ordi-nary text editor if necessary, and therefore easilyhuman readable. We also wanted to avoid writ-9
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Figure 8: The graphics pipeline and double bu�eringing special formatting and parsing code each timea new kind of object was added to the system.The scheme we decided on uses Lisp's ability toparse the printed form of an object and determineits type, and similarly to produce a printed formdependent on its type. The fact that Lisp candetermine types at run-time is essential in this de-sign. We also use a little of the Meta-Object Pro-tocol (MOP) to let the class de�nitions provideslot names.A Prism data �le can be understood as a textstream that can be processed by the Common Lispread function, and therefore consists of a seriesof printed representations of Lisp objects, mostlysymbols, numbers, strings, and possibly lists andarrays. Symbols must be quali�ed by packagenames. This is automatically done when the sys-tem writes data to a �le, if the package in whicheach symbol is interned is not the current packageand the symbol is not accessible in the currentpackage (i.e., it may be external or internal in an-other package, but not imported into the currentpackage). This is the normal way to run Prism.The text representation of an object begins witha symbol that is the class name of the object. Fol-lowing that are pairs of items consisting of a sym-bol naming one of the object's attributes, and avalue for that attribute. The value may be a read-able Lisp object (a number, a symbol, a list or amodest sized array), a large binary array, for whicha special rendition is provided, or a construct thatshould be interpreted as a list of objects (ratherthan a list of simple values). Figure 9 shows anexcerpt from one such data �le.Since the Lisp reader is insensitive to theamount of \whitespace" between items, the �lemay include whitespace and \newlines" as conve-nient to make it more easily readable by humans.

The Lisp reader generally converts lowercase in-put to uppercase, so except for quoted string data,we assume case insensitivity. The system must becon�gured so this works, i.e., the readtable is thedefault as described in Steele [18, page 540].Strings are delimited by the double quote (")character. Unquoted strings in �les are read assymbols.The end of the data for the object is demarcatedby the keyword :end with no value following it.The functions get-object and put-object calla generic function, slot-type, to determine howto read object slots from and write them to the�le system. The slot-type function takes two ar-guments, the object and the slot name. For eachclass in Prism, that will be read from or writtento the �le system, we provide a method, as neces-sary. If the class inherits slots from any superclass,then that method calls call-next-method, sincethe slot asked about may be inherited from an an-cestor class. The default slot-type method returnstype :simple, so slot names of that type do notneed to be explicitly mentioned in the method.If all the slots are :simple, no special slot-typemethod is needed.When an object is being read from or writtento the �le system, the slot type of the slot beingread will cause the following behavior on the partof get-object and put-object::simple Use the standard Common Lisp func-tions read and write to read and write theslot's data.:bin-array In this case the information in the�le consists of a list of three or four items,as follows: a string representing a �lename,and two or three numbers, representing thedimensions of the 2 or 3 dimensional binary10



PRISM:PATIENTPRISM:COMMENTS ("")PRISM:DATE-ENTERED "6-Jun-1994 12:10:25"PRISM:IMMOB-DEVICE PRISM::NONEPRISM:ANATOMYPRISM:ORGANPRISM:DENSITY 1.0PRISM:CONTOURSPRISM:CONTOURPRISM:DISPLAY-COLOR SLIK:MAGENTAPRISM:VERTICES ((-11.389 -4.717) (-11.322 -1.146)(8.761 -0.067) (7.278 0.202) (5.863 0.0)(-10.378 -6.672) (-11.254 -5.054))PRISM:Z 5.0:ENDPRISM:CONTOURPRISM:DISPLAY-COLOR SLIK:MAGENTAPRISM:VERTICES ((9.569 2.628) (6.806 4.717) (4.38 5.189)(-2.359 6.132) (-5.256 6.267) (-7.346 4.919)(9.03 2.763))PRISM:Z 9.0:ENDetc...:ENDPRISM:DISPLAY-COLOR SLIK:BLUEPRISM:NAME "Liver":ENDPRISM:ORGANPRISM:DENSITY 0.3PRISM:CONTOURS etc...Figure 9: A portion of a patient data �learray of data. The binary array data is readfrom a separate �le by a function for that pur-pose.:object Make a recursive call to get-object orput-object to read or write the slot's data,which is itself an object,:object-list If the attribute value is a list of ob-jects, each object is read in turn by a (recur-sive) iterated call to the get-object function,and each of those objects follows the same for-mat. The end of a list of objects for an at-tribute is demarcated by an additional :endkeyword following the last object in the list.:collection If the slot's data is a collection, theformat in the �le is the same as for a list ofobjects, but as each is read, it is inserted intothe collection, instead of added to a list.

Not all attributes for an object need to havevalues in the �le, but if there is no value, the cor-responding attribute name must not be present,i.e., it is an error for the �le to contain two at-tribute names in succession with no interveningvalue. Note that nil is an allowable value forsome attributes (not all) and is di�erent from anunbound (or missing) attribute.All this is independent of anything about ra-diotherapy. It is parametrized by the class def-initions themselves (we use the MOP functionsslot-definition-name and class-slots to getslot names when writing an object to a �le), andby providing methods as necessary for slot-type.The resulting �le store is not an object orienteddatabase, but su�ces for our purposes. Use of anobject oriented database might o�er some advan-tages and useful functionality but it would alsointroduce other problems. This is under consider-11



ation for the future.2.4 Dose modeling: e�cient 
oat-ing point computation in LispThe implementation of the Prism dose calculationmodule is one area that exposed us to both thebest and the worst that Lisp has to o�er. Onthe one hand, we have no doubt that the su-perb programming environment o�ered by Lispassists immeasurably in the construction of largeand complex software. On the other hand, tweak-ing 
oating-point-intensive Lisp code for optimalperformance is not easy.The Prism dose calculation module comprisesapproximately 3000 lines (about half code andhalf comments). It implements an algorithm thatis fairly straightforward but somewhat elaborate.Essentially, we compute the dose to each point(either in a prespeci�ed set or on a regular 3-dimensional grid) by multiplying together fac-tors accounting for the geometry of the generat-ing equipment, the inverse-square-law divergenceof photon 
ux, and the near-exponential absorp-tion in tissue. The calculation modi�es thesefactors to approximate the e�ects of tissue non-homogeneities. If blocks (Cerrobend shielding ma-terial) are present in the radiated �eld, we calcu-late a component that accounts for radiation scat-tered to the dose point as if the blocked area werethe only area illuminated by the beam and thensubtract this component (weighted by the block'sabsorption) from the dose at that point as if theblocks were not present. If the radiation sourcehas a complex geometry (for instance, as producedby a multileaf collimator which can approximatearbitrary portal �eld shapes) we use numericalspatial integration to calculate the equivalent rect-angular geometry which would yield the same doseto the test point.Our dose calculation model is not very sophis-ticated in a theoretical sense { it is basically acomplicated table lookup. However, the severalnumerical integrations and the correction for tis-sue absorption inhomogeneities (which uses a ray-tracing algorithm) result in code of considerablecomplexity. This complex code is iterated overeach dose point in the point-set or dose-grid. Typi-cal grids may consist of up to a million points. Andall this is for a single beam. A typical calculationsums the computation of dose to each point fromup to 20 or 30 beams, each calculated indepen-dently. Thus a not-uncommon case may involve

several dozen table-lookups and tri-linear interpo-lations to integrate scatter dose to a single point,iterated over 30 million points, resulting in hun-dreds of billions of 
oating-point calculations. Adosimetrist might repeat this entire process manytimes during the formulation of a plan. The com-putation time varies with the complexity of theplan and may range from a few seconds to severalhours.Since speed of an interactive application is veryimportant, optimization of this code was on thecritical path. However, far more important to usinitially than getting it fast, was getting it correct.Using Lisp (rather than a more traditional imper-ative language) helped in two ways. First, theelegance of the language itself (its syntactic sim-plicity and functional style) greatly eased the ini-tial design and veri�cation of the system. Second,the highly-interactive nature of our vendor's im-plementation (Allegro Common Lisp from Franz,Inc.) was of tremendous assistance in debuggingand testing.Regarding the language itself, we were repeat-edly impressed by the similarity of Lisp code tomathematical notation. While in a formal senseall programs specify Turing machines (or equiv-alents like Lambda calculus), that speci�cation isespecially perspicuous in the case of Lisp. We wereable to write initial Lisp implementations of sev-eral components of our dose computation modulealmost as direct transliterations from mathemati-cal notation (
owgraphs and equations) to proto-type working code. Verifying the correctness of theimplementation at this stage was also easy due tothe close correspondence between the mathemat-ical speci�cation and the functional style of ourinitial Lisp code.Our previous dose computation module waswritten in Pascal and ran as a separate process,using Unix interprocess communication (via Lispstreams) to ferry data back and forth. The Pas-cal code ran fast but was not completely correct.There were certain con�gurations that producedanomalous results, primarily unexplained points ofzero dose in regions where the physics (i.e., the for-mula) clearly made that impossible. In ten years ofuse and debugging we were never able to accountfor (or �x) these anomalies. Our very �rst Lisp im-plementation �xed the problem, and these anoma-lies have never recurred since. (Other anomalieshave, but we have always managed to trace themto easily �xed oversights and plain stupid mis-takes.)12



Of course, the initial implementation ran ratherslowly. The current version, now in clinical use forabout six months, runs 100 times faster. It is, asfar as we can tell, still correct. In fact, it is evenmore correct, in that we later discovered severalpoints on which our implementation di�ered fromthe speci�cation or in which the speci�cation wasambiguous. Fixing them resulted in code whichnow better represents our original intent than didthe �rst implementation.The close correpondence between Lisp code andother formal or mathematical styles of descrip-tion was of great value during the optimizationphase of the implementation. We used relativelystraightforward source-to-source transformationsto speed up the code. Some were simple andlanguage-speci�c, like converting mapcar to do(transforming functional application over repeat-edly consed intermediate data structures to itera-tive mutation of persistent state). Others were atthe algorithmic level, like replacing linear and bi-nary search with constant-time lookup. Our table-lookups, at the innermost levels of inner loops andtherefore the most time-critical, had to use searchbecause our represention of machine characteris-tics involved non-uniform sampling (for example,dense sampling at beam edge and sparse sam-pling over 
at regions). We converted search toconstant-time lookup by precomputing (at table-load time) an access-vector that maps an inputvalue directly to the correct table entry.While these transformations were easy to ana-lyze mathematically (and we could therefore ver-ify their correctness), there was always the chancethat subtle coding errors would go unnoticed.That is where the interactive nature of the Lispenvironment (and our vendor's extensions) reallyshined. It was trivially easy to trace executionpaths, insert debugging printouts of critical val-ues, gather timing and function-calling statistics,and do myriad other test probe insertions intothe code to verify that optimization was not com-promising correctness. We built several test jigsthat gathered large quantities of data from testruns of di�erent versions (code with varying lev-els of optimization). These jigs enabled the au-tomatic analysis of output from test runs so thatwe could be sure that changes did not introduceerrors. Some of the jigs also did graphical dis-play so that we could verify that various algo-rithms were working correctly { this was especiallyvaluable in studying two components: a polygon-clipping routine (which clipped block outlines tothe radiation portal) and the spatial integration

used for calculating scatter dose under the blocks.The interactive nature of Lisp (full-featured in-terpreter combined with fast optimizing compiler,trace features, data inspector, etc) made the rapid-prototyping of these test jigs very easy.After optimizing at the algorithmic level we didcode tuning via declarations. The ANSI standardallows and our vendor's product provides inliningof arithmetic functions and array accessors. Care-ful and liberal sprinkling about of 
oating pointdeclarations and the use of type-speci�c arrays tohold 
oating point numbers resulted in consider-able speedup. On occasion this strategy requiredpassing extra variables as control 
ags { where afunction might return data of more than one type,we had it return them via separate variables andused a 
ag to indicate which was the \real" value.Our next e�ort was to improve the e�ciency ofmemory allocation for 
oats. In this phase we di-rectly confronted limitations of the design philoso-phy of Lisp. There is no doubt that many featuresof the language (like dynamic memory manage-ment, typed data objects, generic functions, au-tomatic method dispatch, and presence of sourceterms such as symbols naming variables in the ob-ject code) greatly facilitate the construction of re-liable and robust programs. Once the program isdebugged, some of them can be compiled away forproduction versions. But others cannot. The sin-gle biggest obstacle we encountered was the boxingof 
oating point data (that is, the representationof 
oats as pointers to an allocated chunk holdingthe actual datum bit pattern).Our application computes many billions of 
oat-ing point values during a run of the dose calcula-tion. Only a relative few of them survive as �-nal outputs { the vast majority become garbagesoon after creation. This is the ideal situationfor generational garbage collection (which is whatour vendor's implementation uses). However, eventhough generational collection is currently the bestmethod of managing storage, we still encountereda huge cost in allocating those billions of 
oats andin chasing pointers to pass their values to arith-metic primitives. In our attempts at speedup westudied both vendor-speci�c and generic Lisp-leveltechniques.The vendor-speci�c technique we tried wasthe use of argument and return-value type dec-larations enabling the Franz Allegro compilerto produce code that passes 
oats directly touser-de�ned functions rather than by allocat-ing a boxed value. It worked well (almost 1013



times speedup on certain numerically-intensiveroutines), but ultimately we decided to abandonthis technique as too system-speci�c. It did noteven work in the Linux (as opposed to HP-UX)version of the Lisp from the same vendor { and wehope to run our application with Lisp productsfrom other vendors.Also, even if we could pass unboxed 
oats di-rectly to certain user-de�ned functions, the seman-tics of the language will not allow this techniquefor Lisp primitives themselves. For example, sup-pose we want to pass a list of a few 
oats from onefunction to another. The Lisp primitive does notknow where its inputs came from or are going; itmust generate a list of cons cells each pointing toa fully-boxed 
oat. There is no way we can tellLisp that we don't care about full run-time typetagging because we are just going to hold on to thislist for a few nanoseconds before destructuring it.Of course, we can obtain that e�ect by passing the
oat values in a specialized 
oat vector, but thatstill requires all the overhead of array constructionand the associated memory management.We obtained almost equivalent speedup (a fac-tor of about 8 rather than 10) and accomplishedthe same goal (elimination of 
oat boxing) with aportable generic Lisp solution. We pass 
oat ar-guments and return values via a specialized 
oatvector. The Lisp standard includes arrays of spe-cialized types (like single-float). While notrequired by the standard, all implementations ofwhich we are aware can implement those special-ized arrays by storing the acual bit patterns inthe array slots rather than by indirecting throughpointers. Thus the boxing problem goes away.Or at least, it almost goes away. Now we haveto stu� all the 
oat arguments for a function intoa vector before calling the function, and the func-tion must dereference them. When it starts up, ei-ther it must copy these values into local variablesor it must indirect through the vector every timeit needs to access one of them. This overhead isunavoidable, given the semantics of the language(or so it seems). If one is to get the bene�ts ofgenerational garbage collection, one must be will-ing to let the garbage collector move data aroundduring a computation. That means that the com-piler cannot optimize memory references to datain arrays by generating memory accesses directlyto the cell holding the data. That cell is part ofan array that the garbage collector may move atany time; therefore, it must be accessed at leastby indexing from the pointer to the array itself.

This seemingly minimal overhead of one memoryindirection per data access, multiplied by billionsof accesses, becomes a signi�cant cost.2.5 Image projection: another opti-mization challengePrism recently added the ability to view a projec-tion of a set of CT images. A CT image representsthe X-ray density of a patient in a two dimensionaltransverse cross-sectional plane. An example CTimage of an abdomen cross section is shown in�gure 3. An example projected image, througha collection of cross sections of a head as a vol-ume data set, can be seen in �gure 10. Thus, aset of these CT images can be used to representa 3-D grid of density information. For treatmentplanning, it is quite useful to be able to visualizethis data from arbitrary viewpoints. For exam-ple, by projecting the CT data to the viewpointof a radiation beam source, dosimetrists are ableto use this data to guide adjustments to the beamgeometry. In Radiation Oncology, this generatedimage is commonly called a Digitally RecomputedRadiograph (DRR) because it simulates an X-Ray(radiograph) of the patient.2.5.1 The DRR AlgorithmThe implementation of a DRR calculation is sim-ilar to a ray tracing algorithm. The algorithm isas follows:For each pixel in the resulting DRR image,1. Calculate the ray from the virtual camerapoint to the current pixel.2. Trace the ray through the 3-D grid to �nd theCT image voxels which intersect the ray.3. Calculate the total density for the currentpixel by summing the values of the inter-sected voxels weighted by the length of theray within each voxel.Our implementation is very close to the algo-rithm presented by Siddon [19] except that we donot require a constant distance between the CTimages in an image set. This 
exibility is usefulwhen a high degree of precision is required aroundthe treatment area and resolution requirementsare much lower further from the treatment area.14



Figure 10: A digital reconstructed radiograph generated from a collection of cross sectional X-ray CT images2.5.2 Performance tuningIt is important to note that this involves a signif-icant number of accesses to the 3-D image grid.Thus, e�cient array access is an important fac-tor for performance. To gain e�cient array accessin Lisp, the compiler must know both the typeof data in the array and the size of the array atcompile time. Of course the compiler must alsohave its optimization settings enabled. This sim-ple change alone made the code about 10 timesfaster by inlining array references.The code optimization for this module is not yetcomplete and there are still a few options to pur-sue. For example, there is still potential optimiza-tion to be done with respect to cache coherencybecause the 3-D dataset is rather large (tens ofmegabytes).2.6 Planning target volumes: a rulebased componentAs part of the advance toward true three dimen-sional radiation therapy treatments, the Interna-tional Commission on Radiation Units recently de-�ned an entity known as the planning target vol-ume (PTV) [20]. While a physician should ideallybe able to outline a tumor volume on a patient's

treatment planning CT (cross sectional image set)and then irradiate only that volume, certain real-istic constraints make this impossible. During aradiation treament, the tumor may move relativeto its location on the CT images due to physiologiccauses such as respiration, swallowing, stomachmotion, etc. Additionally, since treatments aregiven daily over a period of weeks, further erroris introduced from variations in daily treatmentset-up. Consequently, in order to ensure treatingthe entire tumor volume to full dose, an expan-sion of the tumor volume is de�ned which takesinto account these intra- and inter-treatment un-certainties. This larger volume, illustrated by thedashed line in Figure 11, is the planning targetvolume.2.6.1 The PTV modelThe Planning Target Volume Tool [21] included inthe Prism system generates a PTV using a knowl-edge base, inference engine, and volume expansionalgorithm. It relies on the provided tumor volumeas a basis for expansion, and uses symbolic (cate-gorical) information about the tumor location, his-tology, stage, and extent of patient immobilizationto derive the parameters of the expansion.Planning target volumes are generated by en-15



Figure 11: Tumor volume outline in one plane(solid line), together with surrounding PTV(dashed line).larging the tumor volume cylindrically by a margin� in three dimensions. � is the root-mean-squarecombination of the values of several components.Component types are: patient motion (�pm), tu-mor motion (�tm), and day to day setup variation(�su). � = 1:614�q�2pm + �2tm + �2suThe values of these components are determinedby information about the tumor, patient organsand other aspects of the patient's condition. Thisinformation is mostly symbolic rather than nu-meric or geometrical. The types of informationused to describe the tumor and patient follow:T stage: This label, one of the four levels, T1,T2, T3, T4, indicates the extent of the pri-mary tumor. The categories are related tosize but have qualitative signi�cance towardsprognosis and treatment strategy.N stage: Similary the extent of apparent involve-ment of regional lymph nodes is graded, N0,N1, N2, N3.Cell type: The cell type is related to the tissue oforigin of the tumor cells, and therefore the al-lowable values may depend on the tumor site.Some typical cell types are: squamous cell,large cell, small cell, adenocarcinoma, lym-phoepithelioma.Immobilization device: This refers to any me-chanical device that will be used to restrictthe patient's movement during treatment,and to aid in reproducing the precise posi-tioning of the radiation beams each day oftreatment. Devices include: mask, alpha cra-dle, plaster shell, none.

Region: This gives some guidance, for lung tu-mors, about how much internal motion to ex-pect. Regions of the lung include: hilum,lower lobe, mediastinum, upper lobe.Much of this information is site speci�c. Thecurrent version of the tool supports only twoanatomic sites, lung and nasopharynx, but it isonly a matter of gathering more clinical and phys-ical data to add support for other sites.2.6.2 Implementation of the PTV toolThe PTV tool is implemented as a Common Lispfunction within the Prism system, that producesradiotherapy planning target volumes given infor-mation about a patient and the patient's tumor.The relations between the patient and tumor in-formation and the magnitudes of the margin com-ponents are represented by rules. A rule inter-preter uses the rules and input data to determinethe appropriate margin component values.(define-rule LUNG-ALPHA(AND (type-p ?tumor-instance tumor)(within-p ?tumor-instance lung)(type-p ?pat-immob immob-dev)(immob-p ?pat-immob alpha-cradle))->(AND (margin setup-error (0.6 0.6 0.6))(margin pt-movement (0.2 0.2 0.2))))Figure 12: A sample rule relating patient and tu-mor information to a value for an expansion pa-rameterThe PTV is generated by expanding the convexhull of the contoured tumor volume by the amount� computed after all the applicable rules havebeen used to determine the � components. Thismodel and implementation were tested by com-paring the generated target volumes with PTV'sdrawn by experienced radiation oncologists, usingstandard expert system evaluation methods [22].The model is su�ciently e�ective to be useful asan aid in routine treatment planning.3 Results and discussionHaving four years of real world clinical use ofPrism, as well as experience with maintenance andenhancement, we can report that in general thechoice of Lisp as the development language has16



worked out very well. We were able to build arichly featured application and tune it for highperformance, with a relatively small amount of ef-fort. While we have not compiled detailed statis-tics on the discovery and repair of programmingerrors (bugs), in general they have not been morefrequent than in our previous work, and they havebeen much easier to �nd and �x than in the Pascalprogramming environment.3.1 Adequacy of features of PrismIn addition to basic 3-D radiation treatmentplanning capabilities, the Prism system includesunique features, and has some characteristics thatare not found in other RTP systems:1. dynamic random access - there is no enforcedpolicy for the order of treatment planningsteps,2. built-in capability for arti�cial intelligencetools, including a rule interpreter [23] provid-ing support for experimental development ofautomated radiation treatment planning al-gorithms [24],3. a software tool for automatically generatinga planning target volume from a physiciandrawn tumor volume [21],4. more explicit attention to quality engineering,better documentation of system behavior andinternals,5. more adaptability, for integration of newmodules and outside software, for example,integration of an on-line digital anatomy at-las [25].6. more adaptability, with respect to diversityof radiation treatment machine types, and in-tegration with computer controlled radiationtreatment machines.3.2 PerformanceThe two critical areas where run-time executionspeed is important are the updating of the graphicdisplays and the dose calculation. In both areaswe achieved acceptable performance relative to ourexperience with a more conventional programminglanguage and implementation.

On a typical RISC workstation, Prism providesadequately responsive performance in most cir-cumstances. With a few cross sectional views dis-played the user can operate the beam control di-als and rotate the radiation beams, getting up-date rates of 5-10 updates per second, even withall the pixmap copying, and with image display inthe background. The projected beam's eye viewsupdate slightly slower, but still fast enough for in-teractive use. The one area where performancelags is the gray scale mapping of images and thecalculation of projected (DRR) images. We knowfrom examining the code that there is still roomfor performance improvements there, and we in-tend to pursue this.Prism does not have surface-rendered displaysof organs, etc. but this is important and we arepursuing this now. Typically applications achievehigh performance in 3-D surface rendering by us-ing specialized libraries such as OpenGL. This isunder investigation but it is not obvious whetherthis will really be better than writing reasonablye�cient implementations of standard tiling andrendering algorithms in Lisp.Much as CLX provides a reasonably e�cient in-terface to 2-D graphics in the X environment, itwould be a tremendous contribution for someoneto provide a highly tuned implementation of 3-D graphics for Common Lisp, especially one thatcan 
exibly take advantage of graphics accelera-tion hardware and still be compatible with X. Thisinvolves to some extent the current debate overthe future of extensions to X such as PEX for 3-Dgraphics.It must be said that higher performance couldbe obtained by leaving the X environment and us-ing a system that leverages local hardware. Theimportance of network operation of Prism is suf-�cient that we will not pursue this path. This isnot a language issue.Our current Lisp implementation of the dosecalculation runs about 20 percent faster than didthe old Pascal version, and it is 100 percent morecorrect.3.3 Project managementWe have gained experience with software engineer-ing methods that can greatly reduce the e�ort in-volved in building a treatment planning system.The use of abstract behavioral types and medi-ators, with Entity-Relationship modeling, helpedkeep the design of Prism at a high level and helped17



untangle many possible design traps. We usedboth a waterfall approach and some amount ofbottom-up design (building small generic toolsthat seem useful). All this and the use of Lispappear to have saved a lot of time and e�ort.This is important, since the cost of software de-velopment can be enormous, and for commercialproducts the cost of an RTP system product isdominated by the cost of the software. Commer-cial RTP products that include software and a sin-gle Unix workstation are typically in the $200,000to $300,000 price range. Informal conversationswith other developers indicate that these productsrepresent source code on the order of 300,000 to500,000 lines of C code, and can involve as muchas 50 person years of e�ort.Prism was built with relatively little e�ort andcosts very little to maintain and enhance. The ini-tial release of Prism in July 1994 was about 45,000lines of code with about 7 person years of e�ort,including the time it took to develop speci�ca-tions, do testing, and write documentation. Sincethen maintenance and further development repre-sent about another 4 person years. Prism todayhas grown only to about 52,000 lines of code buthas many more features than the 1994 version. Ofthis, the SLIK user interface toolkit, the part thatis completely generic, is about 9,000 lines of code.The SLIK programmer's manual is 3,000 lines ofLATEX source (60 pages when printed).The documentation for Prism includes a func-tional speci�cation, a programmer's guide to in-ternals, the dose computation speci�cation men-tioned above, and a User Manual, totalling about23,000 lines of LATEX source in addition to theSLIK manual.3.4 Lisp as an industrial strengthprogramming languageLisp has features and characteristics that make itradically di�erent from all the more familiar pro-gramming languages. These features are impor-tant in writing RTP software; they are not justexotica that arti�cial intelligence researchers playwith. In Prism the following features proved to beespecially useful:� Run-time types: Lisp can determine the typeof a piece of data at run-time, and act accord-ingly. We took advantage of this to make thestorage and retrieval of RTP plan data verysimple.

� Multi-methods: In the Common Lisp ObjectSystem, methods for generic functions can beselected at run-time based on the type of anynumber of arguments. This is used in manyplaces in Prism.� Lexical closures: Lisp code can create newfunctions while the program is running. Thisaccounts for much of the modularity and com-pactness of the Prism code.What would really be nice is a world in whichone could reprogram the semantics of the languagewith the same 
exibility with which we can re-program the syntax of Lisp. That way, duringprogram development, debugging, and testing wecould use all the safety features that Lisp includes(data typing, garbage collection, error checking).Once convinced that the code works correctly, wecould tell the compiler (by changing a few localdeclarations) to assume the correctness of certaininvariants and to generate code which thereby runsblazingly fast.Production Lisp compilers partially achieve thisgoal. By declaring types of local variables, mostcompilers will dispense with type checking andwill inline arithmetic operations. It would be niceif such declarations could enable the Lisp sys-tem to dispense with type checking and boxing ofnon-immediate data (such as 
oats) when passed-to/returned-from not only user-de�ned functionsbut also system primitives. If the user passes a�xnum to a function whose argument is declaredto be a 
oat, that user must expect to pay the priceof a bus error or segmentation violation. But ifthe code is correct, that code might run ten timesfaster (ours did).On the old Lisp Machines one could partitionmemory into areas, and thereby control wheredata were allocated. A common e�ciency hackwas to allocate temporary data in an area thatcould be reset periodically (when safe, reset thefree pointer to the beginning of the area). Theresult was intantaneous garbage collection (fastereven than generational). Of course, this techniquesacri�ced safety { programming errors easily couldcrash the system. But this is the situation C pro-grammers are in all the time!It would be nice to incorporate such pro-grammable semantics into the standard. Thatwould give Lisp programmers the best of bothworlds { the safety, elegance, and purity of Lispcombined with the raw speed of assembler or C.Of course programmers would have to remain vig-18



ilant, but it is always easier to be vigilant and toprogram correctly when there is a safety net avail-able (by turning optimizations o�). Users of mosttraditional languages have no safety net, whetherthey want it or not.It is very unusual to write large programmingprojects in radiation oncology or radiology in pro-gramming languages other than the mainstream(FORTRAN, C, perhaps C++). The Lisp pro-gramming language in particular has had a repu-tation as a specialized tool for arti�cial intelligenceresearch, unsuitable for serious medical comput-ing. Modern Lisp compilers and systems are, how-ever, highly developed, and experience with Prismshows that Lisp is a powerful and useable generalpurpose programming language. Prism's interac-tive performance is acceptable for clinical use, andfor speed critical operations it is comparable toprograms written in C. The Prism dose computa-tion code achieves performance fully comparablewith other more conventional languages. The useof advanced design concepts that saved us yearsof development e�ort did not adversely a�ect theperformance of the resulting system. Lisp is nolonger part of the exotica of the past, but a well-supported environment for building powerful radi-ation oncology software.4 Future directions/work inprogressMany enhancements to Prism, and researchprojects using Prism, are under way. We describehere only a few, the implementation of a medi-cal image server using TCP/IP, a network clientinterface to an Internet medical anatomy knowl-edge resource, and the development of a macrolanguage for radiation therapy planning systems.4.1 The Prism DICOM-3 medicalimage serverThe application and presentation layer networkprotocol developed by the American College of Ra-diology (ACR) and NEMA for interchange of med-ical image data between imaging computer sys-tems is called DICOM-3 [26]. It is an object ori-ented model for medical images and related en-tities as well as an encoding scheme and com-munications protocol that is designed to work inseveral wide area network environments, includ-ing TCP/IP. DICOM-3 is now supported by most

manufacturers of computerized medical imagingequipment.The Prism DICOM-3 server is a facility for re-ceiving images and image sets from imaging de-vices such as CT (Computed Tomography) or MRI(Magnetic Resonance Imaging) scanners, and stor-ing them in the image database of the Prism RTPsystem for subsequent use in treatment planningwith Prism as described above. We are imple-menting it also in Common Lisp, to take advan-tage of the fact that the image objects and imagesets that the server receives are already well mod-eled and supported in existing Prism code. Weare con�dent that the performance and robust-ness will be adequate. Our experience and that ofothers with the Common Lisp Hypermedia Server(CL-HTTP) from the MIT AI lab [27] already hasdemonstrated the e�ectiveness of writing socketbased TCP/IP network applications in Lisp.The Prism DICOM-3 server design follows thestandard model for a TCP/IP connection-orientedserver [28]. The overall 
ow is shown in �gure 13.The names in the �gure correspond to the stan-dard BSD socket library calls.Other DICOM implementations have beenmade available including full source code anddocumentation, for example the CTN project atMallincrodt Institute of Radiology [29]. These arevery large programs and suites of programs and li-braries written in C. They are di�cult to integrateinto other systems like Prism, and are not verymodular. We decided it would be more e�cientsimply to write our own directly in Common Lisp.The code in �gure 14, together with an interfaceto the BSD socket library (using a Lisp vendor spe-ci�c foreign function facility), is a sketch of an im-plementation of the server structure in �gure 13.Since some of the socket function names are al-ready de�ned in Common Lisp, we used slight vari-ations in those cases.Although this project is not completed, it ap-pears that our server will be very small and mod-ular. The interfacing of Lisp code to the BSDsocket library was a simple application of the for-eign function interface of the particular CommonLisp system we are using. Although this part ofthe code is not ANSI standard, it would be easyto adapt to a di�erent vendor's foreign functioninterface. The core, the DICOM-STATE-MACHINEfunction, is vendor and system independent.
19
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Figure 13: Model for a TCP/IP based DICOM-3server4.2 The Digital AnatomistThis section describes work in progress on an on-line anatomy reference system for radiation treat-ment planning.4.2.1 Use of anatomy knowledge in RTPDelivering enough radiation to kill a tumor whileminimizing damage to surrounding tissue requiresknowing the precise locations of all anatomicalstructures nearby the tumor site, and althoughthere are generally plenty of CT and MRI patientscans of the site availiable, certain soft structuresoften do not show up well using either imagingtechnique, forcing a dosimetrist to infer their loca-tions from the structures that are visible and fromhis own knowledge of anatomy. Because of the dif-�culty involved with making such inferences withany degree of accuracy, the dosimetrist will oftenrefer to an anatomy atlas book. Unfortunately,this book will have all of the usual drawbacks of

(defun DICOM-SERVER (port qlen)(let ((local-addr (make-sockaddr-in))(sock (SOCKET *pf-inet**sock-stream* 0))(remote (make-sockaddr-in))descriptor)(if (< sock 0)(error "Cannot create socket"))(setf ;; set up local socket params(sockaddr-in-addr local-addr)*inaddr-any*(sockaddr-in-port local-addr)(tcp-port-number port)(sockaddr-in-family local-addr)*af-inet*)(if (< (BIND sock local-addr*sockaddr-in-len*) 0)(error "Bind failed for socket"))(if (< (tcp-LISTEN sock qlen) 0)(error "Listen failed for socket")(loop(setf descriptor(tcp-ACCEPT sock remote))(if (< descriptor 0)(error "Accept failed...")(progn(DICOM-STATE-MACHINE descriptor)(tcp-CLOSE descriptor))))))Figure 14: A sketch for a DICOM serverprinted media: static content with a �xed organi-zation and presentation style. As an alternative,we are currently exploring how the use of an on-line anatomy reference tool could help to improvethe process.4.2.2 On-line anatomy information andknowledge resourcesAt the University of Washington, the StructuralInformatics Group has an ongoing project knownas the Digital Anatomist in which repositories ofanatomical information are accessible to multipleclients via a distributed framework. Although allclients to date have been educationally oriented,the use of a distributed framework implicitly en-forces a strict separation between content and pre-sentation, meaning that how a client chooses tointeract with its user is completely independent ofthat client's ability to retrieve information fromthe Digital Anatomist's databases. Add to thisa rich semantic network of relationships betweenanatomical terms which allows the potential for in-telligent searching, and the availability of a wide20



variety of segmented anatomical data, and wehave an excellent foundation on which an onlineanatomy clinical reference tool could be built.Our ultimate goal, should the tool prove to beuseful, is to integrate it with Prism, making ita natural choice to build it in Common Lisp us-ing SLIK and CLX. Another incentive for usingLisp was that most Digital Anatomist componentscommunicate with each other using a Lisp-likecommand syntax [30, page 478].4.2.3 Implementation experienceWe implemented a prototype clinical reference in-terface to the Digital Anatomist resources (the im-age repository and semantic network of anatomicterms). The prototype provides support for thekinds of queries we believe would be useful in ra-diation treatment planning. Radiation oncologistsin the department examined the prototype andprovided comments on the user interface, the use-fulness of the functions, and the completeness ofthe database. A fuller report of this project from aclinical perspective is in preparation. Here we onlycomment on technical implementation issues.While things went smoothly for the most part,one interesting problem did arise along the way:how to display the GIF images stored in the Dig-ital Anatomist's image database when CLX pro-vided support only for the XBM �le format. Our�rst idea was to look for source on the web thatcould handle the decoding of GIF images, but thesource for every decoder we found was tightly cou-pled with its respective program. Our next ap-proach was to decode the images ourselves, butthis proved to be very di�cult and ine�cient dueto the GIF format's use of LZW compression,which required manual unpacking of bits sinceour �le system does not directly support open-ing �les using non-standard bit-length bytes. Oureventual solution was to use an image process-ing program called \ImageMagick" via Allegro'srun-shell-command operating system extensionto Lisp. The \ImageMagick" program convertsthe image into PPM format, which was trivial tothen decode using Lisp.Our initial implementation of the PPM decoderwas correct but ine�cient (a medium sized GIFrequired about ten seconds to load) and requiredre�ning. Our �rst re�nement was to extract theraster data from the �le in one lump sum usingread-sequence instead of extracting one byte at atime using read-byte. This reduced the load time

to about two seconds. Next we inlined referencesto the array in which the raster data had beendeposited, and this reduced load time to aboutseven-tenths of a second, which was satisfactoryfor our purposes.As with Prism, using Lisp helped us to writeabstract, succinct, correct, readable code whichcould be tuned for e�ciency when necessary.In addition, when we begin exploring intelligentsearch, Lisp will be the perfect tool, both for com-municating with the Digital Anatomist and forthe implementation and availability of search al-gorithms.4.3 A macro language for RTPIn 1977, when most medical physicists were strug-gling to master simple graphic output devices likethe Calcomp pen plotter, Ted Sterling, then acomputer scientist at Simon Frazier University,was already looking into visionary ideas for radia-tion therapy planning software. Sterling proposed[31] that powerful systems for RTP could be builtby �rst designing a macro language for RTP, withprimitives for body parts, radiation machines andtheir functions. Prism is a step in this direction.A future enhancement we are exploring is to carrythis out and provide a higher level macro languagethat the user may create convenience functionsand other enhancements to Prism without havingto modify any code. There is no better environ-ment than Lisp for this kind of work.5 ConclusionOur experience points to some straightforwardconclusions. We believe that the expressive powerof Lisp gives Prism a lot of functionality with asmall amount of source code. Using good soft-ware engineering practices helped considerably toreduce the amount of time to a deliverable prod-uct. Performance of Prism in an interactive en-vironment is satisfactory for use in a busy clinic.If Prism can be used as an example, there is noreason Lisp cannot be a mainstream applicationdevelopment language.6 AcknowledgementsThis work was supported in part by NationalInstitutes of Health grants R01 LM04174 andR01 LM06316 from the National Library of21
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