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Abstract

The advent of crowdsourcing has created a variety of
new opportunities for improving upon traditional meth-
ods of data collection and annotation. This in turn has
created intriguing new opportunities for data-driven ma-
chine learning (ML). Convenient access to crowd work-
ers for simple data collection has further generalized to
leveraging more arbitrary crowd-based human compu-
tation (von Ahn 2005) to supplement automated ML.
While new potential applications of crowdsourcing con-
tinue to emerge, a variety of practical and sometimes
unexpected obstacles have already limited the degree to
which its promised potential can be actually realized in
practice. This paper considers two particular aspects of
crowdsourcing and their interplay, data quality control
(QC) and ML, reflecting on where we have been, where
we are, and where we might go from here.

Introduction

Crowdsourcing has attracted much attention in the research
community by enabling data, particularly labeled data, to
be obtained more quickly, cheaply, and easily (Snow et al.
2008). Such new abundance of labeled data has been a boon
to data-driven machine learning (ML) and led to a surge in
use of crowdsourcing in ML studies. However, crowdsourc-
ing has typically been found to yield noisier data than tra-
ditional practices of in-house annotation, which has gener-
ated significant interest in developing effective quality con-
trol (QC) mechanisms in order to improve data quality. This,
in turn, has led to interest in QC in its own right as a chal-
lenging problem for ML.

While many QC challenges being encountered are not
new, some people may be encountering them for the first
time due to the various ways in which crowdsourcing has re-
duced traditional barriers to data collection which formerly
encouraged many researchers to re-use existing data rather
than collect and annotate their own. Annotation (a.k.a. “la-
beling”, or in social sciences, “coding”) is well-studied with
a wealth of prior methodology and experience (e.g. the Lin-
guistic Data Consortium) related to design of annotation
guidelines, organizing and managing the annotation work-
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flow, measures of inner-annotator agreement, etc., that can
usefully inform crowdsourcing-based annotation activities.

Crowdsourcing is also quickly changing the landscape for
the quantity, quality, and type of labeled data available for
training data-driven ML systems. With regard to cost, we
might assume the cost differential between crowd-based and
in-house annotation is around an order of magnitude, mean-
ing we might expect a ten-fold increase in the amount of la-
beled data we can now afford. Effort traditionally required
to collect and annotate data has also significantly limited
quantity of labeled data. Crowdsourcing has now greatly re-
duced this as well. Finally, turn-around time from idea to
training data has now dropped from weeks or days to hours
or minutes, depending on complexity of the learning task.
Assuming current trends continue and crowd-specific QC is
increasingly relegated to lower-level automated system in-
frastructure, cost and effort will further decrease while qual-
ity and speed increase. Overall, such trends have potential
for such explosive growth in total availability and creation
time of labeled data for training ML systems.

Quality Control (QC)

Effective QC plays an important role in determining the suc-
cess of any data collection venture, be it via crowdsourcing
or otherwise. Early crowdsourcing studies have seen QC re-
ceive somewhat inconsistent treatment, at times being not
appreciated until too late, and at times seeming to have been
overlooked entirely (if a human supplied the data, it must
be high quality, right?). Certainly crowdsourcing has made
it easier than ever before to collect voluminous amounts of
lousy data on an unprecedented scale. If we care about data
quality, however, we probably want to think about QC.

QC is certainly not a new problem, as with many other is-
sues being addressed in crowdsourcing research today (Adar
2011), though it may appear in altered form or be more
prevalant than in traditional settings. We may not have the
same workers annotating all examples, affecting how we
measure inner-annotator agreement. Managing a workflow
of distributed workers on micro-tasks differs from manag-
ing a team of in-house, hourly workers. While irresponsible
workers (or test subjects) are not new, they may be more
prevalent or have greater detrimental impact. While tele-
commuting is a well-established labor practice, crowd work
takes it to a new extreme, often with lower quality commu-



nication channels and fewer opportunities to build rapport
with remote workers, especially if they are anonymous.

Human Factors. Since it is people who form a crowd,
crowdsourcing is inherently a human-centric enterprise. As
such, human factors merit particular consideration for effec-
tive design and use of crowdsourcing, and one would expect
that established principles and methodology from the field
of human-computer interaction (HCI) could be particularly
informative. The sad irony is that while crowdsourcing has
attracted some of the greatest interest in computer science
(CS) areas like ML, computer vision, and natural language
processing (NLP), HCI has typically received relatively little
attention in traditional CS curricula and research. As a con-
sequence, those who might now benefit from HCI method-
ology may not have sufficient access or opportunity.

For example, we in the ML community often optimize
metrics and evaluate on synthetic data as proxies for deal-
ing with human subjects, with the assumption that improve-
ments in these artificial settings will translate to tangible im-
proved use by people in practice. Published ML research
typically does not include user studies or limits such stud-
ies to a relatively small group of CS graduate students or
researchers as the test subjects. While we recognize the im-
portance of human factors and human-centered evaluation,
we have been largely happy to leave this to others.

While such specialization and division of labor has been
an invaluable organizing structure for facilitating scientific
progress, it can be problematic when a disruptive shift like
crowdsourcing crosses the traditional artificial boundaries
we have constructed between knowledge areas. The myriad
of new opportunities crowdsourcing is enabling in areas like
ML and NLP has led to many of us suddenly taking up col-
lecting our own data for the first time, and unsurprisingly,
making a few mistakes along the way. We who thought we
did not have to worry about designing user interfaces or in-
teraction mechanisms, or worry about human relations (HR)
issues, suddenly find ourselves doing all of these activities
in crowdsourcing. When we ask users to perform a task that
is simple and obvious to us, yet they screw it up, we may
infer perhaps that the workers are lazy or deceitful, when in
fact it may our our own poor design that is truly to blame.

As an analogy, consider the popular waterfall model for
software engineering. This model assumes that users know
in advance what features they want, allowing an initial re-
quirements analysis to hand off a specification that is then
built and delivered. The problem is that when the above as-
sumption does not actually hold in practice, users are dis-
satisfied with the delivered product, at which point the naive
software engineer laments his fickle users rather than appre-
ciate his own design error. Similarly, the real culprit limiting
the quality of collected data in crowdsourcing may often be
our own inattention to human factors. An omnipresent chal-
lenge for all researchers is to become more aware of the dis-
ciplinary lens through which they observe the world and how
that shapes their interpretations of observed phenomena. An
ML researcher observing low quality data may naturally see
the problem with an eye toward ML issues, affording rela-
tively less attention to considering non-ML ways such poor
quality may have arisen or strategies for addressing it.

Automation. A large amount of work to date on crowd-
sourcing QC has investigated ML strategies for detecting
“spammers” (or assessing worker quality more generally)
and aggregating labels from multiple workers (i.e. consensus
methods) to cancel-out mistakes made by individual work-
ers (Whitehill et al. 2009). Such QC may be performed as
a distinct post-hoc cleanup stage after data collection, or
it may take the form of real-time monitoring of annotation
to determine which examples to annotate next and at what
degree of pluralism (redundancy) labeling should be per-
formed, etc. While there is clearly an important need for
such work, it is also important to recognize the limitations of
this approach to QC and any assumptions of worker behav-
ior that underly it. For example, do we adopt a prior model
of our workers as by-and-large responsible or irresponsi-
ble? While many such irresponsible behaviors have been ob-
served, counter examples have been reported as well, with
hypothesized correlation between certain worker behaviors
and the underlying labor model (Kochhar, Mazzocchi, and
Paritosh 2010). It is also certainly the case that it is easy
to make catastrophic mistakes early in data collection from
which no amount of ML post-processing will ever be able
to cleanup. ML-based QC may really be best at just filtering
out spammers and computing majority vote (Ipeirotis 2011).

Today we are seeing aspects of QC being increasingly au-
tomated and pushed down into a lower, system-level layer
of data collection engines (Little et al. 2009). Such a separa-
tion of concerns recognizes that at least some QC issues can
be generalized across the different types of data being col-
lected, and thus handled in one place for the benefit of many.
It thereby creates a useful level of abstraction for practition-
ers, who can focus on articulating their particular annota-
tion guidelines and let the system worry about low-level QC.
Such infrastructure seems critical to enabling wider adoption
of crowdsourcing practices by those who are less familiar
with these issues and do not have the time, interest, or risk
tolerance to address low-level QC issues themselves. Ven-
dors like CrowdFlower1 are seeking to fill this need.

Annotation. We should also remember that QC is not
merely a question of workers’ intelligence, effort, and per-
sonal biases. QC is also a question of how well annota-
tion guidelines are communicated, how well the guidelines
cover the infinite variety of data encountered in practice, and
internal-consistency of the guidelines themselves. The term
“guidelines” itself conveys their lack of completeness and
definitive rules for procedural execution. The value of hu-
man annotation is not merely sensory but also analytical and
interpretive, especially (but not only) when we are interested
in annotating more complex phenomena. Annotation guide-
lines represent a living document, especially at early stages
of the annotation process. Traditional practice iteratively re-
vises them as annotators become more familiar with the data
and encounter examples for which existing guidelines are
ambiguous, unclear, or not covered. While annotators could
individually make arbitrary decisions for such difficult ex-
amples and blithely march on, such a process would be a
recipe for inconsistency. Instead, annotators typically dis-
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cuss such questionable cases to arrive at consensus on how
such examples should be annotated (consistently across an-
notators), and codify their decisions by revising the guide-
lines (Kochhar, Mazzocchi, and Paritosh 2010).

Worker and Task Organization. With crowdsourcing,
we must still contend with such challenges, but we must
learn how to appropriately address them in the new envi-
ronment. One labor model close to the traditional one would
assign largely traditional roles to distributed workers. They
would engaged at a high-level, assigned trust and responsi-
bility, and would essentially function as tele-commuters, just
as many of us already do in our own professional roles. Such
a model has been successfully demonstrated by Google’s
quality raters and Metaweb (Kochhar, Mazzocchi, and Pari-
tosh 2010), among others. At the other end of the spectrum,
we can simply view the crowd as “HPU” (Davis et al. 2010)
automata : given the current guidelines, we “turn the crank”
and then inspect the output and look for problems. Based on
any issues we find, we analyze and infer the cause, then re-
vise the guidelines and repeat. Between these extremes lies
an interesting design space of alternative labor models to ex-
plore. We can seek new ways to automate more of the work,
better structure tasks and organize human workers, and try
to optimize the overall man-machine annotation pipeline.

The minority voice. A final area for significant concern
with crowd QC, particularly when automated, is how to dis-
tinguish rare insights from spurious noise? How can we rec-
ognize when the majority is wrong, when a single voice
has recognized another valid interpretation based on their
context? Crowdsourcing studies have often equated majority
vote with quality, or that agreement with an expert is defini-
tive. Can we learn to better recognize when other or better
truths exist? Crowdsourcing is lauded for the diversity of
opinions it can give voice to, yet we must find new ways to
listen for those voices to be heard. Whereas with only one or
two annotators we clearly understood the lack of diversity, a
risk with crowdsourcing is assuming our crowdsourced data
encompasses broad diversity when our QC process is sys-
tematically eliminating it. One should also examine crowd
demographics (Ross et al. 2010) to better understand how
diverse and representative our crowd and workers really are.

Machine Learning (ML)
Crowdsourcing has attracted much attention in the research
community by enabling data, particularly labeled data, to
be obtained more quickly, cheaply, and easily (Snow et al.
2008). While crowdsourcing is most often understood as
yielding noisier data than traditional annotation practices, it
also has potential for the exact opposite, reducing annotation
bias through greater employing a larger and more diverse
set of annotators for the same cost. Crowdsourcing’s initial
and primary continuing appeal has been largely as a tool for
better data collection, providing researchers with a means
of gaining new traction on pre-existing problems. However,
many researchers first drawn to crowdsourcing as mere users
have found unexpected and interesting challenges, such as
QC, and led them to study crowdsourcing in its own right.

More labeled data. Supervised learning methods have
historically outperformed unsupervised methods on the

same task (since providing a learner with more information
can intuitively enable it to more easily learn a desired pat-
tern). In recent years, however, we have seen this trend re-
verse due to massive growth in Web content providing unsu-
pervised and semi-supervised methods with free and seem-
ingly limitless training data. This trend, along with an ob-
servation that magnitude of training data seems more im-
portant than model sophistication, has been characterized as
the unreasonable effectiveness of data (Halevy, Norvig, and
Pereira 2009). Crowdsourcing has now introduced another
potentially disruptive shift since far more labeled data has
suddenly become practically obtainable than was previously.

How might access to this new volume of labeled data alter
the balance in which we utilize supervised, semi-supervised,
and unsupervised methods? We might revisit the supervised
learning curves for various tasks as a function of labeled
data quantity, specifically seeking points where traditional
costs associated with acquiring labeled data formerly led us
to abandon supervised methods and exploit unlabeled data
instead. To reach a target accuracy, is it now more cost-
effective to proceed further along those supervised learning
curves before moving to unlabeled data? Can we reach new
accuracy levels by simply labeling more data (a labeled cor-
rollary to the unreasonable effectiveness of data)? To what
degree does relative benefit from unlabeled data diminish
when we can saturate our supervised learners with labeled
data? What impact will an order of magnitude more labeled
data have on how we build practical learning systems?

More hybrid systems. Traditionally there has been a
wide gap between automated accuracy and human accu-
racy for various tasks, with published research progressively
demonstrating incremental improvement toward closing the
gap. However, new hybrid systems that blend human compu-
tation with automation provide an opportunity in some cases
to immediately close such gaps, calling upon crowd workers
in near real-time to supply key judgments or interventions to
supplement limitations of automation, e.g. where automated
predictions are most uncertain or certain examples are criti-
cally important (Yan, Kumar, and Ganesan 2010).

As such, we have suddenly enlarged the design space for
application developers. Matching human-level competence
in an application is no longer simply a futuristic research
goal, but is now a practical reality that is achievable at a cer-
tain cost tradeoff (e.g. time and expense) which can be nav-
igated in the design space as a function of task context and
user need. We can continue to analyze system behavior in
terms of accuracy vs. time vs. cost tradeoff space, but instead
of paying only for storage and CPU cycles, we may pay
for human computation as well. The choice is ours. More-
over, beyond matching human-level accuracy, hybrid sys-
tems further create new opportunities to exceed our former
limitations, amplifying human cognition with new forms of
human-computer interaction and task decomposition. The
capacities of our hybrid systems may exceed the sum of their
parts, augmenting existing capabilities of man and machine.

More uncertain data. While we have always had noise in
labeled data, in-house annotation and QC typically produced
low error rates (as measured by inner-annotator agreement)
which could be largely ignored for training and evaluating



our learning systems. As mentioned in the previous section
on QC, recent ML work on consensus has sought to trans-
form relatively noisy crowd labels into high quality in-house
labels though automated QC (Whitehill et al. 2009). The ad-
vantage of this approach is it creates a separation of concerns
between QC and learning; QC fixes the data, and ML can go
on training and evaluating learnings systems as we typically
have before, assuming labels are reliable. The disadvantage
of this approach, however, is that label disagreements be-
tween workers may arise from a combination of factors, in-
cluding genuine uncertainty as to the correct label to be as-
signed. The cost of simplicity with consensus is that it masks
such underlying uncertainty in the data, which is contrary to
a fundamental tenet of AI that uncertainty should be mod-
eled, propagated, and exposed. Discarding uncertainty via
consensus precludes the system any possibilty of recovering
later from mistakes made early by QC preprocessing.

An alternative to consensus is to model uncertainty of
labels as a first class citizen in our learning systems. This
means training and evaluating our systems on noisy labels
via explicit or implicit probability distribution over possible
labels for each example (Smyth et al. 1995). Such a distri-
bution could be used to simply weight the example-specific
gain/loss accorded to the system for predicting a given ex-
ample correctly. If the system estimates a probability dis-
tribution over possible predictions, evaluation can measure
distributional similarity between predicted vs. empirical la-
bel distributions for each example (class-based estimation).

More diverse data. Costs and effort involved with tradi-
tional annotation often restricted work to one or two work-
ers, increasing the likelihood that labels produced would ex-
hibit a particular bias. With crowd labeling, however, we
stand to benefit from getting many more sets of eyes on the
same data and thereby providing a greater diversity of la-
bels. Such diversity is particularly valuable in subjective la-
beling tasks such as relevance assessment for Web search,
in which case the same search query may be given by dif-
ferent users to express different information needs and in-
tents (Alonso, Rose, and Stewart 2008). Another example
is social tagging, in which different people often associate
different labels with the same item.

One interesting challenge related to diversity and wisdom
of crowds (WoC) (Surowiecki 2004) is to what extent we
can develop a more formal, computational understanding of
WoC (Wallach and Vaughan 2010). WoC’s requirements of
diversity, independence, decentralization, and aggregation
are suggestive of methodology for effective, representative
sampling. For example, uniform random sampling provides
stochastic guarantees that with larger sample sizes we will
capture greater diversity in the population and thereby a
more representative sample. We can then infer a more repre-
sentative statistic or distribution for the population (aggrega-
tion) by selecting or combining elements from the sample.
Can we articulate a more precise understanding of WoC via
computational and statistical principles?

Moreover, to what extent can we connect disparate knowl-
edge of WoC, ensemble learning, and consenus methods? It
seems that despite our best efforts to create a single, effec-
tive learner, we often achieve the best results by cobbling

together a diverse ensemble of independent learners of vary-
ing abilities and aggregating their predictions (Bell and Ko-
ren 2007). We have theory and empirical experience from
co-training, for example, relating the importance of inde-
pendent learners to the effectiveness of the combined en-
semble (Blum and Mitchell 1998). On the other hand, we
have also seen that using less diverse strong learners outper-
formed an ensemble of models dumbed-down for the sake
of promoting diversity (Gashler, Giraud-Carrier, and Mar-
tinez 2008). ML consensus work has to date been largely
divorced from work in ensemble learning, despite similari-
ties of both compensating for weakness of individual mod-
els/workers via plurality of redundant computation (machine
or human). Both combine labels from multiple independent,
weak annotators to arrive at a more accurate single labeling.

More specific data. While on one hand crowdsourcing
enables us to collect more diverse labels by virtue of a di-
verse population of crowd workers, via active learning it also
creates an opportunity for better focusing annotation effort
on the examples that will be most informative to the learner.
While active learning is not new (Settles 2009), historically
it was often investigated in the context of iterative interac-
tion between the system and one or few expert annotators
(or simulated by selecting pre-labeled examples rather than
labeling arbitrary new examples). As a result, it was often
slow, expensive, and studied at relatively small scales. More-
over, because feedback came from reliable in-house anno-
tators, noiseless “oracle” feedback was often assumed. Be-
cause active learning requires balancing costs of computa-
tion time (example selection vs. training) vs. human time
(labeling), traditional costs associated with in-house annota-
tion were factored in. Active learning has also often involved
researchers labeling data themselves, making it often prefer-
able in practice to keep annotation and learning separate.

With crowdsourcing, active learning can now be practi-
cally applied at scale and with frequent interactions between
system and crowd labelers. Depending on how QC is han-
dled, active learning must also contend with noisy labels:
we must estimate not only how informative a given example
will be to the system, but also how likely it is to be annotated
correctly (example difficulty), and the cost to the system if
the supplied label is incorrect. Sometimes it may be opti-
mal to select an example to label which while being less in-
formative to the system has greater expected probability of
being labeled correctly (Brew and Cunningham 2010). As
in some question answering systems (Horowitz and Kamvar
2010), the learner might also try to perform routing: predict-
ing which example should be assigned to which annotator.
Such routing may depend on a variety of factors: expertise
of the worker relative to the given example, the importance
of the example, the accuracy and cost of the worker, etc.

The typical benefits championed with active learning is
faster learning curves relative to time and cost. One impor-
tant benefit of crowdsourced active learning will simply be
greater ability to realize such benefits in practice. Even if
crowd workers were paid the same as traditional annotators,
the convenient access to online workers to perform the label-
ing will by itself make active learning far more attractive and
usable in both research and industry. In this sense, crowd-



sourcing provides a two-part cost savings: greater ability to
realize traditionally-claimed savings of active learning, as
well as reduced cost of crowd annotation vs. traditional an-
notators. A second important benefit will again be the im-
plications for use of labeled vs. unlabeled data for training
when labeled data is plentiful. Instead of comparing to past
supervised learning curves, we might instead consider past
learning curves for active learning, which will be steeper in
comparison. As many prior studies in active learning consid-
ered smaller training sizes due to traditional costs of label-
ing, there may be greater potential for active learning than
supervised learning to benefit from crowdsourcing.

More ongoing data. Lifetime, continuous, never-ending
learning may also be made easier by crowdsourcing. Peo-
ple routinely update their knowledge and hypotheses as new
information becomes available, and our systems ought to
do the same. We should distinguish here between collect-
ing additional labels characterizing a stationary data distri-
bution (larger sample size) vs. collecting fresh labels for a
non-stationary distribution (adapting to change in the under-
lying data). For example, with a temporal distribution like
a search engine’s query stream, users are always searching
for different things with an ever-evolving query language,
so it is valuable being able to continually update the set
of examples used rather than sticking to a fixed, slice-of-
time dataset. The ease of mechanized integration between
automation and crowdsourcing can facilitate a never-ending
process by which crowd annotators supply or the system re-
quests additional labels to further learning. This workflow is
largely agnostic as to whether online or batch learning is em-
ployed; there is simply the question of volume of labels to be
processed (based on cost and accuracy goals) and whether
there is sufficient scalability in the learning algorithm and
crowd workforce to meet the target volume.

More rapid data. The ability to rapidly obtain new la-
beled data on demand has a variety of implications.

• Relative cost of researcher time. Cheap and rapid data an-
notation is akin to cheap and fast computation: it changes
the way you think about spending your time and mental
energy. Rather than speculate about and debate the poten-
tial benefit of two alternative approaches (expensive re-
searcher time), one can simply try both and let the data
speak for itself. Researcher time can then be focused in-
stead on harder problems for which cheap computation
and data collection cannot so easily solve.

• Rapidly solving new problems. When an important new
problem or task presents itself, we typically think along
the lines of data re-use: is there an existing dataset that
is closely aligned or that could be easily adapted to it? If
not, we often turn to unsupervised approaches rather than
creating new labeled data. This is especially true when
there is a time constraint driving us to address the prob-
lem quickly. When one can rapidly and easily create new
labeled data, we might instead simply do that and just as
quickly deploy an existing learner trained on the new data.

• Rapid evaluation and tuning. Automatic machine trans-
lation (MT) was typically slow to develop and evaluate
since it required human judges to evaluate quality of sys-

tem translations. The introduction of Bleu scoring (Pa-
pineni et al. 2002) enabled rapid turn-around in system
tuning since evaluation was now fully-automatic. How-
ever, no automated proxy metric is a perfect substitute for
human judging, so faster and cheaper human judging is
still very valuable. Crowdsourcing offers a middle way
between traditional judging and proxy metrics, with far
faster turn-around than the former with potentially equal
quality. Thus we can evaluate both more rapidly than tra-
ditionally and more accurately than with proxies. Fast,
cheap evaluation lets us be more creative and daring in
exploring a wider variety of system configurations.

More on-demand evaluation. Instead of evaluating a
system against some fixed dataset, we can evaluate it in-
stead against the crowd. Search engine evaluation often eval-
uates systems in terms of their accuracy on some subset of
the top-ranked webpages they return (rather than the en-
tire Web, which would be impossible to label in entirety).
Re-usable test collections have been created in the past by
pooling the top-ranked documents from many systems and
labeling those, assuming all other documents are not rele-
vant (Voorhees 2002). A significant problem we have en-
countered with ever-increasing collection sizes like the Web
is that we cannot form a large enough pool in this manner to
find a sufficient proportion of relevant documents to make
the collection reusable for other systems which did not par-
ticipate in the pooling. Another limitation of this approach is
dependence on community to build a single test collection.

Crowdsourcing enables us to rapidly and easily label new
examples on-demand for evaluation. When system tweak-
ing changes the set of highly ranked webpages, we can sim-
ply label the new examples. This requires solid QC in place
so labels are reliable, accounting for unmatched samples in
evaluating significance of observed differences. Memoiza-
tion let us cache each new label so we can score the system
again later on the same examples with confidence of label
consistency for idempotent evaluation (Little et al. 2009).

Less re-use. Since labeled data has traditionally been
difficult to obtain, data re-use has often shaped both our
methodology and the set of problems we choose to work on.

• Benchmarks. Established datasets serve a valuable role
in enabling comparable evaluation across institutions and
gauging overall progress by the field. On the other hand,
dogged tuning on the same datasets year after year raises
significant concerns of over-fitting. Crowdsourcing makes
it easier to continually create new, diverse benchmarks for
training and evaluation. The risk of such ease, however,
is that everyone creates and experiments upon their own
datasets, making it more difficult to compare alternative
methods for the same task. Such is largely the case with
ML work on consensus, in which many groups have eval-
uated on their own crowdsourced datasets. Lack of com-
mon benchmarks has traditionally been one of the main
motivators for shared task evaluations.

• Shared tasks. Besides enabling comparable evaluation,
shared tasks have also served as an important source of
creating new, reusable labeled data for the community.
Such data benefits both immediate participants (for whom



early data access motivates participation), as well as sub-
sequent dataset re-use in the community. Because of the
traditional costs and effort of annotation, shared tasks
served a valuable role by amortizing such costs across
the community, building one datasets for use by all. In
some cases this has required each team to pitch-in and la-
bel a portion of the data themselves. With crowdsourcing,
the benefit of community-based data production is dimin-
ished, as is the need for (and willingness of) participating
research groups to perform such labeling themselves.

• New tasks. While creation of new tasks is not an end
in-and-of-itself, which problems we choose to work on
is partially a function of both their difficulty and impor-
tance (where difficulty can both spur work as well as de-
ter it). When labeled data is easy to come by, a variety
of problems become less difficult. This impacts not only
which problems researchers choose to work on, but also
the learning methodology they use to approach them.

Conclusion

We live in exciting times. For anyone who hates informa-
tion overload, crowdsourcing will exacerbate it while also
providing new tools for handling it. For those who love big
data, crowdsourcing will give us more of it, change its na-
ture, and challenge us to rethink how we can best utilize it.

A variety of interesting challenges remain to be faced. All
the reasons we might normally prefer automation over man-
ual labor will still apply and challenge us to think creatively
about when and how human effort and interventions should
be employed. Can we scale crowd labor to meet this growing
demand, especially for applications requiring greater human
expertise, or when greater privacy, security, or intellectual
property concerns are present? Will pay-based crowd work
be sustainable at volume and how might the market and
pricing evolve? How can we increasingly leverage human
computation without dehumanizing our workers? How can
we effectively decompose work and simplify cognitive load
while protecting workers from de-contextualized or mislead-
ing work in which they cannot assess their role for informed
consent? Can computational principles and understanding
help inform human education and innovation? Computa-
tional wisdom of crowds (WoC) and ensemble thinking may
help us better understand how to mine and aggregate human
wisdom, while active learning theory may provide new in-
sights for more rapidly training our HPUs (Davis et al. 2010)
to perform focused tasks. An interesting future awaits, with
hopefully at least one or two more workshops (Adar 2011).
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