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ABSTRACT
Because it is expensive to construct test collections for Cranfield-

based evaluation of information retrieval systems, a variety of lower-

cost methods have been proposed. The reliability of these methods

is often validated by measuring rank correlation (e.g., Kendall’s

τ ) between known system rankings on the full test collection vs.

observed system rankings on the lower-cost one. However, ex-

isting rank correlation measures do not consider the statistical

significance of score differences between systems in the observed

rankings. To address this, we propose two statistical-significance-

aware rank correlation measures, one of which is a head-weighted

version of the other. We first show empirical differences between

our proposed measures and existing ones. We then compare the

measures while benchmarking four system evaluation methods:

pooling, crowdsourcing, evaluation with incomplete judgments,

and automatic system ranking. We show that use of our measures

can lead to different experimental conclusions regarding reliability

of alternative low-cost evaluation methods.
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1 INTRODUCTION
Test collections provide the cornerstone for Cranfield-based batch

evaluation of information retrieval (IR) algorithms [11], allowing

empirical A/B testing of new IR systems and thus playing an impor-

tant role in the development of more effective systems. However,

improvements that are not statistically significant may result in

misleading (or at least inaccurate) conclusions. Statistical signifi-

cance testing in system evaluation is therefore deemed crucial for

achieving meaningful advancements [6, 39].
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Building a high-quality test collection is a costly process which

encouraged research on developing low-cost evaluation methods

such as selecting documents to be judged [31], crowdsourcing [30,

33], predicting system performanceswith incomplete judgments [49]

and judgment-free system evaluation [44]. One of the main ways

to evaluate these low-cost methods is to compare systems ranking

on the full test collection (usually TREC test collections) with that

produced by the low-cost evaluation method. Kendall’s τ [28] is

the most popular ranking correlation measure used to perform the

comparison (e.g., [2, 7, 30, 31, 49]). While Kendall’s τ provides a

very intuitive score (i.e.,
1−τ
2

% of system pairs are relatively-ranked

differently in the two rankings), it has drawbacks for IR system

evaluation [5, 40]. One major drawback is that all system pairs are

treated equally, ignoring their ranks and performance differences.

Due to shortcomings of τ , other rank correlation measures were

proposed. Yilmaz et al. [50] proposed τAP which gives more weight

to swaps at higher ranks. Gao and Oard [19] proposed τGAP that

extends τAP such that performance difference between pairs is also

considered. Gao et al. [18] proposed ρr , a head-weighted version of

Pearson correlation [36]. However, none of these consider statistical

significance in performance difference among systems. Cormack

and Lynam [14] proposed applying τ only on pairs that exhibit

statistical significance of difference in the true ranking. Carterette

[5] proposed a rank distance measure drank that imposes a higher

penalty when ranking of significantly different pairs in the true

ranking is swapped in the predicted ranking, but ignores statistical

significance of difference in scores in the predicted ranking.

To our knowledge, none of the proposed measures in the liter-

ature considered whether the statistical significance of difference

in performance scores between pairs in the predicted ranking is

concordant with that in the true ranking or not. However, in order

to achieve a reliable evaluation in cases where rank correlation is

computed between two lists of items for which we can compute sta-

tistical significance of difference, item pairs should be concordant

in terms of both ranking and statistical significance of difference.

To understand what problems can be introduced when ignoring

statistical significance, consider a simple example of ranking 3 IR

systems (a,b, c). Let their true ranking using evaluation method

E be <a,b, c> such that performance differences among all pairs

are statistically significant. Assume that using another evaluation

method E’ (different metric or different judgments, etc.), they are

ranked as <a,b, c>, but this time none of the differences among

pairs is statistically significant. That is, E’ actually could not “dis-

tinguish” between the 3 systems. However, τ , τAP , τGAP , drank
would all return perfect correlation scores or almost-perfect (e.g.,
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ρr ). Trusting high rank correlation scores, an IR researcher evalu-

ating IR systems with E’ is likely to have inaccurate conclusions

about statistical significance of the experimental results.

As a further motivating example, Section 3 shows an analysis

of 11 TREC test collections in terms of statistical significance of

difference among system pairs. We found that a noticeable per-

centage of system pairs (22% to 37%) are actually not exhibiting

statistically-significant differences, suggesting that rank correlation

measures ignoring statistical significance of differences could be

misleading in estimating the quality of low-cost test collections.

In this work, we propose two statistical-significance-aware rank

correlation measures tested in the context of evaluating low-cost

evaluation methods. The first measure, named τSiд , considers both
system rankings and statistical significance of differences among

systems. The other measure, named τSiдH , is a head-weighted ver-

sion of τSiд , in which mistakes at higher ranks are penalized more

than those in lower ranks, while still considering both rankings and

statistical significance of differences. The two measures give the

user the liberty to control the importance of statistical significance

in the correlation score. Towards that end, the measures include two

weighting parameters: α for the penalty on rank-concordant pairs

whose score difference is statistically significant in one ranking but

not the other, and β for the penalty on rank-discordant pairs whose

score difference is not statistically significant in either ranking.

In our experiments, we evaluate the impact of the two parame-

ters on the correlation score and compare the proposed measures

against existing ones. The results suggest that τSiд and τSiдH cap-

ture discordant pairs in terms of statistical significance of difference

that existing measures are not able to. We also re-evaluate low-cost

evaluation methods in four different areas. We find that the con-

clusions of the experiments can change based on the correlation

measure used in evaluation, suggesting that measures covering mul-

tiple aspects of rank correlation can produce more reliable results.

Contributions. The contributions of this work are three-fold:

• We analyze statistical significance of differences among runs

that participated in 11 TREC test collections and show that

differences amongmany run pairs are indeed not statistically-

significant, which can be problematic when a rank correla-

tion analysis is performed with measures that are not aware

of statistical significance, e.g., Kendall’s τ .

• We propose two new rank correlation measures, namely τSiд
and τSiдH , taking both ranking and statistical significance

of differences among pairs into consideration.
1

• We re-evaluate low-cost IR evaluation methods proposed

by prior work in 4 different areas including pooling, crowd-

sourcing, prediction of system performance with incomplete

judgments, and automatic system ranking. We find that the

conclusions of experiments could change depending on the

correlation measure used in evaluation.

The remainder of the paper is organized as follows. We first

summarize related work on main correlation measures used for

IR evaluation in Section 2. Section 3 presents an analysis of sta-

tistical significance of differences among system pairs in several

TREC collections. Proposed correlation measures are introduced

1
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in Section 4. We show empirical differences between proposed and

existing rank correlation measures in Section 5. Section 6 covers re-

evaluation of low-cost IR evaluation methods. Finally, final remarks

and directions for future work are presented in Section 7.

2 RELATEDWORK
Rank correlation measures are often used to validate reliability of

proposed methods for low-cost evaluation of IR systems [20, 30,

31, 49]. They are also used for other comparisons as well, such as

centrality scores on graphs [46] and search results [16, 17, 29, 45].

When comparing two ranked result lists, a document may exist

in one of the rankings but not in the other. However, we focus

on correlation between rankings in which both rankings have the

same set of items (e.g., systems).

While a re-usable test collection should enable precise measure-

ment of IR evaluation metrics (e.g., MAP) for A/B testing of baseline

vs. newly proposed search algorithms, a lower bar for A/B testing

is merely to verify the better algorithm scores higher, regardless of

the magnitude of the difference. Generalizing to multiple systems,

we might measure rank correlation between the “true” ranking of

participant systems in a shared task evaluation (e.g., TREC), accord-

ing to an evaluation metric and standard process (e.g., pooling using

NIST judgments), vs. the possibly-incorrect “predicted” ranking of

systems induced by an alternative (lower-cost) process.

Given two low-cost evaluation methodsA and B vs. a third, base-

line method C , it is typical to compare the rank correlation of A vs.

C to that of B vs. C to assess whether A or B yields higher corre-

lation. However, most prior work has not measured whether the

difference in rank correlation between low-cost evaluation meth-

ods A and B is actually statistically significant. For an exception,

see [27], which uses the t statistic for triangle significance testing
following Hotelling [25].

In the remainder of this section, we summarize main correlation

measures used in IR evaluation, focusing on rank correlation ones.

A comparison of these measures is given in Table 1.

2.1 Correlation without Statistical Significance
Kendall’s τ [28] is an easily interpretable measure and is the most

popular method used in IR evaluation. Simply,
1−τ
2
% of the pairs

are ranked in reverse order in the rankings of interest. While being

easily interpretable, it ignores variance in performance differences

among pairs and treats all swaps equally regardless of their ranks.

There are a number of studies proposing variants of Kendall’s τ
with different weighting schemes. The idea of weighted τ is first pro-
posed by Shieh [41]. Melucci [34] proposed amore flexible weighted

scheme such that users can define any weight for each rank. Yilmaz

et al. [50] proposed a head-weighted version of τ , meaning that

swaps in higher ranks are penalized more than swaps in the lower

ranks in the true ranking. Gao and Oard [19] further improved τAP
such that swaps between pairs with large performance differences

are penalizedmore than swaps between pairs with low performance

difference. Related to Kendall’s τ , Voorhees [47] proposed a rank

correlation measure that estimates the probability of a discordant

pair, ignoring ties and concordant pairs.

Assigning more weights to agreements in top ranks (i.e., head-

weighted correlation) has also been studied in other rank correlation

http://qufaculty.qu.edu.qa/telsayed/code/correlation/


Table 1: Rank correlation measures. SSA stands for Statistical-Significance-Aware.

Coefficient Ordinal Interval Head-weighted Symmetric True Ranking SSA Predicted Ranking SSA Range
ρ [36] - ✓ - ✓ - - [-1,1]

τ [28] ✓ - - ✓ - - [-1,1]

τAP [50] ✓ - ✓ - - - [-1,1]

τGAP [19] ✓ ✓ ✓ - - - [-1,1]

ρr [18] ✓ ✓ ✓ - - - [-1,1]

τDP [14] ✓ - - ✓ ✓ - [-1,1]

drank [5] ✓ - - - ✓ - [0,∞]

τSiд ✓ - - ✓ ✓ ✓ [-1,1]

τSiдH ✓ - ✓ - ✓ ✓ [-1,1]

measures [26, 32]. Gao et al. [18] proposed ρr , a head-weighted

version of Pearson [36] considering ranks and performance scores

of systems together. Henzgen and Hüllermeier [24] proposed a rank

correlation measure for fuzzy orderings in which the positions of

items with small score differences are considered equal.

The main difference of our proposed coefficients with the afore-

mentioned coefficients is that none of them considers statistical-

significance of differences among system pairs.

2.2 Correlation with Statistical Significance
To the best of our knowledge, Cormack and Lynam [14] were the

first to propose a rank correlation measure that considers statisti-

cal significance. They adapt τ such that only statistically different

systems are considered in the calculation. Sakai [38] utilized dis-
criminative power (DP) to compute the percentage of the runs that

have been discriminated statistically using a particular evaluation

method. Even though his method is not a rank correlation mea-

sure, it has the similar intuition with Cormack and Lynam [14], as

mentioned by Carterette [5]. Therefore, we refer to Cormack and

Lynam’s coefficient as τDP .
Carterette [5] introduced drank which has the following fea-

tures: 1) penalizes swaps based on the differences between pairs, 2)

gives penalty if similar items in true ranking are separated in the

predicted ranking, and 3) eliminates variance due to systems and

assumes a fixed population of systems. drank is quite different than

others due to being a distance measure, not a correlation measure.

Being a distance measure, drank is ≥ 0 and lower scores mean

better correlations. One disadvantage of drank is that it is not easily

interpretable due to having no theoretical upper bound. To over-

come this issue, Carterette also provided a statistical hypothesis

test with a p-value.
τDP and drank do not consider statistical significance in the pre-

dicted ranking. If a system pair is significantly different in the true

ranking but not in the predicted ranking, it is not penalized as long

as the rankings are concordant. These coefficients take only statis-

tical significance in the true ranking into consideration. However,

in our proposed methods, both ranking and statistical significance

are considered together and the correlation score can get penalized

if the pairs are discordant in terms of statistical significance but

concordant in terms of ranking. To the best of our knowledge, no

other rank correlation measure considers this issue.

3 STATISTICAL SIGNIFICANCE AT TREC
TREC test collections provide a valuable resource for developing and

evaluating IR systems, and also a test environment to evaluate the

effectiveness of IR evaluation methods such as crowdsourcing [30,

33], pooling documents to be judged [31], predicting performance

of systems using incomplete judgments [2, 49] among others.

A popular way to show the effectiveness of a proposed method

is to compare the ranking of systems using the proposed evaluation

method with the ground-truth ranking. In this correlation analysis,

one of the most popular rank correlation measures is Kendall’s τ .
However, as mentioned before, τ does not take statistical signif-

icance into account and treats all system pairs equally. This can

potentially lead to drawing inaccurate conclusions on the quality

of proposed methods. For instance, assume we have two evaluation

methods such that one of them causes swaps between significantly

different pairs (i.e., ranking them in the reverse order wrt. ground-

truth ranking) while the other causes same amount of swaps but

only between not-significantly different pairs. We would like to use

the latter because the other causes more severe evaluation prob-

lems. However, we cannot distinguish these two methods using τ or

any other coefficient that ignores performance differences between

system pairs. If there are many not-significantly different pairs in

the ground-truth ranking, the performance of evaluation methods

can get penalized heavily due to swapping similar systems even

though we might not care about swaps between those pairs.

We investigate the statistical significance of difference among

system pairs in 11 TREC test collections including ad-hoc search

task of TREC5-10 andWeb Track 2010-2014. For each test collection,

we first rank the runs based on mean average precision (MAP).

Subsequently, given the list of per topic average precision for each

system, we apply paired t-test for each system pair [42]. We report

the percentage of system pairs that are not significantly different

(i.e., p-value ≥ 0.05) in Table 2, denoted as NS pairs. We observe

that many of the system pairs do not show statistically-significant

differences in AP (e.g., 37.3% of system pairs in TREC-10).

To further analyze the observed differences among system pairs,

we cluster the pairs such that all systems in a cluster are not-

significantly different. Because statistical significance between pairs

is not a transitive relation, we run a greedy approach that clusters

systems starting from the first ranked system to the last ranked

system. A brief summary on the clusters is shown in 4
th

and 5
th

columns of Table 2. The number of clusters acquired is generally



Table 2: TREC test collections used in experiments.

Collection Runs NS Pairs Clusters Max Cluster Size
TREC-5 [21] 61 36.4% 9 16

TREC-6 [21] 74 35.9% 12 19

TREC-7 [21] 103 26.8% 14 16

TREC-8 [21] 129 27.6% 15 20

TREC-9 [23] 104 31.1% 13 18

TREC-10 [48] 97 37.3% 13 21

WT2010 [8] 56 34.2% 10 12

WT2011 [9] 62 34.6% 8 14

WT2012 [10] 48 37.2% 7 13

WT2013 [12] 61 36.7% 10 17

WT2014 [13] 30 22.3% 11 7

low for a test collection despite having high number of runs. To

visualize the clustering results, we show the clusters of TREC-8 as

an example in Figure 1. As seen from the figure, there are only 5

clusters covering systems ranked between 8 and 94.

Figure 1: TREC-8 runs grouped based on statistical
significance of AP scores. Black dots represent the
significantly-different pairs and white dots represent
the not-significantly-different pairs. Colored squares rep-
resent the clusters in which all pairs are not-significantly
different to each other. X and Y axes show the ranks of
systems based on MAP scores.

Overall, despite the high number of runs in TREC collections,

many of them are actually not-significantly different. As mentioned

earlier, low-cost evaluation methods can easily rank these similar

systems in reverse order wrt. true ranking and get penalized when

τ or τAP is used for rank correlation. This can potentially cause

inaccurate conclusions drawn from the experiments. For example,

evaluation methods causing swaps between significantly different

pairs can be evaluated as outperforming methods that cause swaps

only in not-significantly different pairs.

4 NEW RANK CORRELATION MEASURES
In this section, we propose two new rank correlation measures

which incorporate statistical significance of differences between

system scores. In Section 4.1, we introduce τSiд , which extends

Kendall’s τ . In Section 4.2, we introduce a head-weighted variant

τSiдH , which extends τAP [50].

4.1 Significance-aware Measure: τSiд
Given a set of n items, there are

(n
2

)
unique combinations (i.e., pairs)

of items. Kendall’s τ [28] compares two rankings over n items and

computes the number of concordant pairs (C) (i.e., ranked in the

same order in both rankings) vs. the number of discordant pairs (D)
(i.e., ranked in reverse order). Positive C − D indicates correlation,

while negative C − D indicates inverse correlation. This sum is

normalized by the number of unique pairs, thus τ ∈ [−1, 1]. The
formula of Kendall’s τ is given in Equation 1:

τ =

(
n

2

)−1
(C − D) (1)

As mentioned earlier , τ does not consider the magnitude of the

item values, only their relative ordering. Assuming these values

are evaluation metric scores (e.g., MAP scores of alternative IR

systems), this further means that τ does not consider the statisti-

cal significance of differences between system scores, as has been

discussed in prior work [5, 40].

We now introduce τSiд , which extends τ to incorporate statisti-

cal significance of differences between system scores. Assume R1
and R2 are two rankings (of real-valued scores) to be compared.

Let A and B be two systems included in each ranking, and let

P(R1A,B ,R2A,B ) denotes a penalty according to how R1 and R2 score
A and B. We define τSiд per Equation 2:

τSiд(R1,R2) =
(
n

2

)−1 n∑
i=1

n∑
j=i+1

1 − P(R1i, j ,R2i, j ) (2)

Next, we proceed to define the penalty function P(R1A,B ,R2A,B )
according to five possible cases, where α and β are parameters.

Case 1. (A,B) is concordant and the difference in scores is sta-

tistically significant in either both or neither ranking. P(·) = 0 (no

penalty).

Case 2. (A,B) is concordant but their score difference is statisti-
cally significant in one ranking and not the other. P(·) = α .

Case 3. (A,B) is discordant but the score difference is not statis-
tically significant in either ranking. P(·) = β .

Case 4. (A,B) is discordant and the score difference is statistically
significant in one ranking but not both. P(·) = α + β .

Case 5. (A,B) is discordant and the score difference is statistically
significant in both rankings. P(·) = 2 (maximum penalty).

More precisely, assume A and B are scored in R1 as A1 and B1,
and in R2 asA2 and B2. Assume that R1 ranksA higher than B. If the
difference in their scores is statistically significant, we denote this

as A1 > B∗
1
, otherwise we denote it as A1 > B1. R2 may similarly



score A and B as: (1) A2 > B2, (2) A2 > B∗
2
, (3) B2 > A2, or (4)

B2 > A∗
2
. Thus we have 2 × 4 = 8 possible scenarios. If R1 ranks

B higher than A, we have another 8 possible scenarios. Table 3
enumerates these 16 cases. Note its symmetry.

Table 3: Penalty function P(·) used in τSiд and τSiдH .

Ranking R1
Ranking R2

A2 > B∗
2

A2 > B2 B2 > A2 B2 > A∗
2

A1 > B∗
1

0 α α + β 2

A1 > B1 α 0 β α + β

B1 > A1 α + β β 0 α

B1 > A∗
1

2 α + β α 0

Note that Kendall’s τ can be viewed as a special case of τSiд as

shown below.

Theorem 1. τSiд is reduced to Kendall’s τ when α = 0 and β = 2.

Proof. When α = 0 (i.e., we ignore statistical significance) and

β = 2 (i.e., we adopt same penalty as τ for discordant pairs), 1−P(·)
will always be 1 for concordant pairs and -1 for discordant pairs

regardless of statistical significance. According to Equations 1 and 2,

this makes τSiд= τ . □

We further impose constraints that α ≥ 0, β ≥ 0, and α + β ≤ 2,

motivated as described below.

Theorem 2. τSiд∈ [−1, 1].

Proof. With α , β ≥ 0 and α + β ≤ 2, it is trivial that P(·) ∈
[0, 2]. Because τSiд simply sums 1 − P(·) over all

(n
2

)
unique pairs,

normalized by their count, then P(·) ∈ [0, 2] → τSiд∈ [−1, 1]. □

Theorem 3. τSiд is symmetric, i.e., τSiд (X, Y) = τSiд (Y, X), where
X and Y are two rankings to be compared.

Proof. P(·) is defined symmetrically, shown precisely in Table 3,

and informally in the five enumerated cases preceding it. □

4.2 Significance-aware Head-weighted
Measure: τSiдH

Assume R1 is a ground-truth ranking and R2 is a (possibly noisy)

predicted ranking which we wish to assess via its rank correlation

to R1. Yilmaz et al. [50] proposed τAP , a head-weighted version of

τ in which swaps at higher ranks in R1 are penalized more than

swaps at its lower ranks. Let I denotes the item at rank i ∈ R1, and
let Ci denotes the number of items correctly ranked higher than I
in R2. Equation 3 defines τAP as follows.

τAP =
2

n − 1

n∑
i=2

Ci
i − 1

− 1 (3)

Similar to τ , τAP does not consider the magnitude of the item

values, only their relative ordering. Assuming these values are

evaluation metric scores (e.g., MAP scores of alternative IR systems),

τAP also does not consider the statistical significance of differences

between system scores.

To extend τAP to incorporate statistical significance of differ-

ences in system scores, we replace its Ci term with a newMi term,

defined as the total weight above rank i ∈ R2 wrt. I . In other words,

instead of giving weight 1 to each concordant pair and 0 to each

discordant pair above the rank cutoff threshold, we instead use the

weight 1 − P(·) (as with τSiд ), with penalty function P(·) as defined
in Table 3. The formula of τSiдH is given in Equation 4.

τSiдH =
1

n − 1

n∑
i=2

Mi
i − 1

(4)

Note that τAP is not symmetric (i.e., τAP (X ,Y ) , τAP (Y ,X ))
because it distinguishes R1 vs. R2. This is also true for τSiдH .

Theorem 4. τSiдH is reduced to τAP when α = 0 and β = 2.

Proof. Equation 3 can be written as Equation 5 by simple math-

ematical manipulation.

τAP =
1

n − 1

n∑
i=2

2Ci − (i − 1)
i − 1

(5)

As defined above,Ci is the number of correctly ranked items above

i in the predicted ranking (with respect to the item i in the true

ranking). Therefore, there are i − 1−Ci items that are not correctly

ranked above i in the predicted ranking. When α = 0 and β = 2,

the weight of each correctly and incorrectly ranked items in Mi
calculation is 1 and -1 respectively. Therefore,Mi = Ci−(i−1−Ci ) =
2Ci − (i − 1). Replacing 2Ci − (i − 1) withMi in Equation 5 indicates

that τAP=τSiдH . □

Theorem 5. τSiдH ∈ [−1, 1].

Proof. P(·) ∈ [0, 2] as shown before. BecauseMi simply sums

1 − P(·) over (i − 1) pairs, divided by (i − 1), then Mi
(i−1) ∈ [−1, 1].

Summing those terms normalized by their count yields a τSiдH
value ∈ [−1, 1]. □

5 EXPERIMENTAL EVALUATION
In this section, we show empirical differences between proposed

rank correlation measures and existing ones. First, we show the im-

pact of changing α and β parameters on the value of the measures

(Section 5.1). Next, we compare proposed measures with existing

ones in literature by conducting experiments on simulated data.

The aim is to show how different correlation measures behave when

the rankings of systems are exactly the same but the statistical sig-

nificance of difference in scores between some system pairs change

(Section 5.2). In all experiments, we used all system runs submit-

ted to TREC-8 except two runs that have the same results with

other two runs (i.e., 127 runs in total). For all experiments including

those in Section 6, statistical significance testing is conducted using

paired t-test with a p-value threshold of 0.05.

5.1 Impact of Changing Measure Parameters
In this section, we address the following research question:

RQ1: How do changes in α and β affect the values of the proposed
correlation measures?

To answer this question, we conducted an experiment where we

varied the values of α and β parameters and studied the impact on

both τSiд and τSiдH . We first ranked the runs based onMAP . Then,
we randomly selected a pair of runs that are consecutively ranked



(a) τSiд (b) τSiдH

Figure 2: Impact of α and β parameters on τSiд and τSiдH

and swapped their AP scores for each topic. We repeated this pro-

cess on the modified ranking without repetition until we reached a

ranking that yields 0.9 τ correlation score (a traditionally-accepted

threshold for acceptable correlation between two IR system rank-

ings [47]) with the true (original) ranking. In the resultant ranking,

there are 1008 discordant pairs (out of 8001) in terms of statistical

significance and τAP is 0.794. Subsequently, we changed α and β
from 0 to 2 with 0.01 increments such their sum does not exceed 2,

and calculated τSiд and τSiдH . The results are shown in Figure 2.
When α and β are 0 (i.e., only discordant pairs in terms of both

ranking order and statistical significance are penalized), τSiд and

τSiдH reach 0.996 and 0.989 respectively, yielding the maximum

observed values. The minimum values of τSiд and τSiдH were

0.744 and 0.629 respectively, achieved when β is 0 and α is 2 (i.e.,

swaps between not-significantly different pairs are ignored but

any change in statistical difference of pairs is penalized with the

maximum penalty). These results show that in two rankings with

0.9 τ correlation score, there can be many discordant pairs in terms

of statistical difference (in our case, 1008/8001=12.6% of the pairs)

which can deeply impact the correlation score between two rank-

ings depending on how much we care about statistical significance

of differences in underlying scores.

5.2 Impact of Changing Statistical Significance
In this section, we address the following research question:

RQ2: How do different rank correlation measures (including proposed
ones) behave if we fix the rankings but change the underlying system
scores (and thus potentially the statistical significance of differences
in those scores)?

To answer this question, we conducted another experiment on

simulated data. We first ranked the 127 runs based on theirMAP
scores. Then, we randomly selected N consecutively-ranked pairs.

For each selected system pair (i, j), we changed the AP scores for all

topics for the system with the lower score using a Gaussian distri-

bution with mean set to (MAPi +MAPj )/2 and standard deviation

set to half of the mean. This ensures that the order of the systems

is preserved, but the statistical significance of differences in their

scores might change. Next, we counted the number of pairs where

the statistical significance has changed over the entire ranking and

also computed correlation scores with respect to the true (original)

ranking using various measures. We repeated this process 1,000

times and also experimented with N ranging from 1 to 63 (span-

ning the entire range from a single pair to the maximum number

of disjoint consecutive pairs), yielding 63 × 1, 000 = 63, 000 cases.

We grouped the cases resulting in the same number of changes in

statistical significance and computed the average correlation score

for each group. Groups with less than 5 cases were discarded. For

our proposed measures, we set α and β to 1 and 0 respectively for

both τSiд and τSiдH . The results are shown in Figure 3.
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Figure 3: Correlation when the rankings are same but statis-
tical significance among pairs are changed

Even though the relative ranking of the systems is preserved, the

score changes we imposed on the selected pairs resulted in changes

in statistical significance among 0%-15% of the total number of

pairs. However, none of Kendall’s τ , τAP , τGAP , τDP , or d-rank
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Figure 4: Evaluation of Hedge, MM-NS and MTF pooling methods on TREC-5 based on different rank correlation measures.

were affected; their values were all fixed at 1 (as shown in the

figure) except d-rank that was fixed at 0 (not shown in the figure),

as they only consider relative ranking with no consideration to

statistical significance.

ρr score changes very slightly due to differences in the mean

scores, ranging from 0.9972 to 1.0. Different from all other mea-

sures, τSiд and τSiдH are able to catch the changes in statistical

significance of differences among systems and their values decrease

as the differences among the two rankings in terms of statistical

significance increase; τSiд value decreases linearly while τSiдH
oscillates due to taking the rank of the pairs into consideration.

6 RE-ASSESSING LOW-COST EVALUATION
RELIABILITY VIA RANK CORRELATION

As discussed in Section 2, rank correlation is often used to validate

the reliability of proposed low-cost IR system evaluation strategies

[20, 30, 31, 49]. In this section, we consider four low-cost evaluation

strategies: (1) pooling methods (Section 6.1); (2) crowdsourcing for

collecting relevance judgments (Section 6.2); (3) system evaluation

with incomplete set of judgments (Section 6.3); and (4) automatic

evaluation without relevance judgments (Section 6.4). In each case,

we compare our proposed τSiд and τSiдH measures vs. existing

ones, as well as the conclusions one would draw from each measure.

In all the experiments reported in this section, we set α = 1

and β = 0.5 for our proposed measures. This means that swaps

between pairs that do not exhibit statistical significance in difference
are penalized by 0.5. If the statistical significance of concordant
pairs do not match in both rankings, we penalize by 1, i.e., half of

the maximum penalty. As for the discordant pairs when the score

difference is statistically significant in one of the rankings but not

both, we penalize each by 1.5. This penalty scheme allows us to

have a wide range of penalty weights including 0, 0.5, 1, 1.5 and 2.

6.1 Evaluating Pooling Methods
Losada et al. [31] recently proposed seven pooling methods adapt-

ing algorithms for multi-armed bandit problem [37]. They compare

their proposed methods against existing pooling methods including

Move-To-Front (MTF) [15] and Hedge [3]. The authors share all their
code and other implementation details

2
, allowing us to reproduce

their results. In one of their experiments, they compare MTF, Hegde,

and their non-stationary version of MaxMean (MM-NS) method.

They vary the number of documents to be judged and rank the

systems using the resultant judgment set of each pooling method.

Subsequently, the rankings are compared against the ground-truth

ranking in which all judgments are used, using Kendall’s τ (see

Figure 4 of [31]).

We compare these three pooling methods over TREC-5 using the

authors’ implementation and compute 8 different rank correlation

measures: Kendall’s τ , τAP , τGAP , ρr , d-rank, τDP , τSiд and τSiдH .

Because MTF and MM-NS methods are stochastic, we generate 3

different pools for these methods and report average results.
3
We

change the number of judged documents per topic from 50 to 1,000.

Figure 4 shows results. The conclusions of the experiment vary

across correlation measures. Based on Kendall’s τ , MTF is seen to

yield slightly better correlation than others using 50 judgments

per topic (MTF: 0.9092, Hedge: 0.8958, MM-NS:0.9023), Hedge is

slightly better than others with 100 judgments per topic, and MM-

NS outperforms others in rest of the cases. However, based on τSiд ,
MM-NS is consistently better than MTF and Hedge. For instance,

with 100 judgments per topic, Hedge achieves 0.9354 τ and 0.8587

τSiд while MM-NS achieves 0.928 τ and 0.8942 τSiд . With 100 judg-

ments per topic, MM-NS cannot capture statistical significance of

difference in concordant pairs correctly (i.e., Case 2 in Section 4.1)

in 277 pairs while Hedge causes the same error in 306 pairs. While

2
https://tec.citius.usc.es/ir/code/pooling_bandits_ms.html

3
Losada et al. [31] do not report if they run multiple trials for these methods.

https://tec.citius.usc.es/ir/code/pooling_bandits_ms.html


Table 4: Correlation between system rankings with NIST and crowd judgments over WT2014

τ τAP τGAP ρr τDP drank τSiд (α=1,β=0.5) τSiдH (α=1,β=0.5)

MAPN IST vs. statAPN IST 0.905 0.876 0.98 0.966 1.0 2.443 0.873 0.810

MAPN IST vs. statAPCROWD 0.937 0.921 0.99 0.973 0.997 2.529 0.854 0.790

τ does not give any penalty for this case and treats them as fully

concordant pairs, τSiд gives α penalty for each. In addition, the fre-

quency of Case 3 error (i.e., discordant pairs but difference between

pairs is not statistically significant) in MM-NS and Hedge are very

similar (170 vs. 154). However, τ penalizes each by 1, while τSiд is

more tolerant and penalizes by 0.5 (since β = 0.5). That justifies

why MM-NS outperforms Hedge based on τSiд but not on τ .
Based on head-weighted measures that are not aware of sta-

tistical significance of differences (i.e., τAP , τGAP and ρr ), Hedge
outperforms others with few number of judgments per topic and

MM-NS is the best performing method with 400 or more judgments

per topic. However, based on τSiдH , we observe a slightly different

pattern: MTF yields slightly better correlation than others with

50 judgments per topic and the difference in correlation between

Hedge and others is smaller wrt. τAP , τGAP and ρr when the num-

ber of judgments per topic is 100-300.

Based on τDP , all methods have very high correlation scores

(0.995+) even with 50 judgments per topic, indicating that all of

them are able to rank significantly-different pairs in true ranking

accurately. However, it makes it harder to distinguish the effective-

ness of different pooling methods.

Overall, when we consider both ranking and statistical signif-

icance of difference, MM-NS seems the best method for pooling.

While Hedge appears to detect better systems with fewer judgments

than MTF and MM-NS, we notice that it causes more mistakes in

terms of statistical significance. Our proposed measures are able

to capture different types of information (i.e., ranking, statistical

significance of differences, and position of concordant/discordant

pairs), yielding different conclusions than other measures in many

cases of the experiments.

6.2 Evaluating Systems via Crowdsourcing
A variety of studies have investigated crowdsourcing relevance

judgments as a method of more efficient, albeit potentially noisy,

data labeling [1]. Recently, McDonnell et al. [33] described a ratio-
nale-based crowdsourcing method reported to achieve high accu-

racy in binary relevance judgments with respect to NIST judgments

for around 700 documents. In a follow-up study [30], the authors

release WebCrowd25K
4
in which they collect crowd judgments

using the same method for WT2014, with 100 documents per topic

selected via statAP stratified sampling [2]. The authors rank the

systems in three ways: 1)MAPN IST , when all NIST judgments are

used to calculate AP scores; 2) statAPN IST , when AP scores are es-

timated using statAP method with NIST judgments of the sampled

documents (100x50=5000 judgments in total); and 3) statAPCROWD ,

when AP scores are estimated using statAP method with aggre-

gated crowd judgments of the sampled documents. The authors

report τ and τAP scores in comparison of each ranking pair.

4
http://qufaculty.qu.edu.qa/telsayed/datasets/webcrowd25k/

Using their data, we also rank the WT2014 participating systems

in same three ways as above and calculate rank correlation using

a wider range of rank correlation measures, including those we

propose in this work. Results are shown in Table 4.
TakingMAPN IST rankings as ground truth, we expect statAPN IST

should yield better rankings than statAPCROWD because crowd

judgments sometimes disagree with NIST. Ranking coefficients that

consider statistical significance (i.e., τDP , drank , τSiд and τSiдH )

affirm this expected finding. However, all rank correlation measures

ignoring statistical significance of underlying scores (i.e., τ , τAP ,
τGAP and ρr ) would lead to the opposite conclusion.

As for the reliability of evaluating IR systems via crowdsourcing,

while we contravene the prior study [30] wrt. finding statAPN IST
does yield better rankings than statAPCROWD , results in Table 4

shows the crowd results are still quite reliable.

6.3 Evaluation Systems with Incomplete
Judgments

A variety of measures have been proposed for evaluating IR sys-

tems using incomplete judgments, such as bpref [4], inferred AP

(infAP) [49], and statAP [2]. Kendall’s τ was used in the above

studies as the rank correlation measure to evaluate the proposed

methods. In this section, we re-evaluate these methods using a

wider range of rank correlation measures.

We use TREC-8 in our experiments here since it was commonly

used in the original authors’ experiments. We de-duplicate the runs

of TREC-8 because drank adds jitter to its values when there is a

duplicate run. We use trec_eval software to compute infAP and

bpref, which adopts Soboroff’s revised bpref [43].

Yilmaz and Aslam [49] compared infAP and bpref via Kendall’s

τ on TREC-8 runs, varying the number of judgments from 50% to

100%. We follow a similar setup, randomly sampling N% of the judg-

ments and ranking runs based on infAP and bpref using sampled

judgments. statAP consists of two components: stratified sampling

and estimation of the AP metric based on the weights assigned to

each document. For fair comparison, we computed the results in

two different ways: (1) statAP w. stratified sample (statAP-SS), where
we sample N% of the judgments using statAP’s stratified sampling

method and rank runs accordingly, and (2) statAP w. random sam-
ple (statAP-RS), where we compute statAP score using the same

randomly-sampled set used with bpref and infAP. We repeat this

process 10 times and also vary N from 10 to 100, computing average

rank correlation scores for each measure. Figure 5 presents results

of Kendall’s τ , τAP , τSiд and τSiдH correlation measures.

Based on all correlation measures (including our proposed mea-

sures and also unreported ones that we omit due to space limita-

tion), statAP with its stratified sampling consistently yields a more

reliable system evaluation than others. This is a case when the

correlation measures clearly agree, yielding a unified conclusion.

http://qufaculty.qu.edu.qa/telsayed/datasets/webcrowd25k/
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Figure 5: Performance of low-cost evaluation metrics with varying pool sizes.

Table 5: Comparison of automatic ranking methods on TREC-5 and TREC-10. Best performing method per correlation measure is in bold.

TREC-5 TREC-10
RS Score Score.EM Vote.EM RS Score Score.EM Vote.EM

τ 0.419 0.474 0.475 0.482 0.609 0.571 0.571 0.582

τAP 0.281 0.343 0.345 0.334 0.357 0.341 0.340 0.351

τGAP 0.295 0.348 0.348 0.350 0.219 0.233 0.233 0.244
ρr 0.072 0.244 0.246 0.248 -0.114 -0.051 -0.051 -0.053

τDP 0.768 0.814 0.814 0.814 0.888 0.879 0.880 0.884

drank 27.74 24.05 24.05 24.582 820.6 621.3 609.3 668.7

τSiд 0.352 0.429 0.431 0.434 0.528 0.512 0.513 0.518

τSiдH 0.203 0.283 0.284 0.282 0.300 0.318 0.319 0.329

We also observe some differences in comparing statAP-RS vs.

others across measures. For instance, when pool size is 70%, bpref
and statAP-RS have similar performance based on τ (0.925 vs. 0.926)

but bpref outperforms statAP-RS based on τSiдH (0.87 vs. 0.848).

Furthermore, we note that τSiдH manages to better distinguish

between the four evaluation measures (i.e, with larger gaps in

correlation scores) when the pool size is 70% and above, compared

to the other measures. As it considers all of rank-order, statistical

significance of differences, and also head-weighted swaps, it exploits

more features of the tested rankings.

6.4 Automatic System Ranking Methods
The task of automatic ranking (AR) [44] is to rank IR systems with-

out relevance judgments. Rank correlation (e.g., τ ) is computed be-

tween the predicted ranking of systems vs. the actual ranking given
human judgments [20, 35, 44]. We re-implemented four AR meth-

ods: Random Sampling (RS) [44], Score, Score.EM, and Vote.EM [20];

all are among the best performing methods as reported in [20]. We

evaluated the methods over two TREC collections (TREC-5 and

TREC-10) for the ad-hoc search task using 8 rank correlation mea-

sures computed between the estimated and true ranking of systems

based onMAP . We repeated RS method 50 times per collection (as

it uses random sampling) and report the average correlation. We

show results over both collections in Table 5.
Over TREC-5, Vote.EM outperforms others according to τ , τGAP ,

ρr and τSiд , while Score.EM is the best performing method accord-

ing to τAP and τSiдH . Over TREC-10, according to τ , τAP , τDP and

τSiд , the best performing method is RS, but Vote.EM is the second

best. However, according to τGAP , ρr , drank and τSiдH , RS is the

worst, showing that the conclusion of the results can be completely

different based on different correlation measures.

Analyzing how the AR methods ranked the top 10 systems ac-

cording to the ground truth over TREC-10, we observe that the top

systems are ranked very low in the predicted rankings, which is

a typically-observed issue in many AR methods [22]. For the RS

method in particular, the ranking of top systems is much lower

in the predicted ranking on average compared to Score.EM, Score,

and Vote.EM. Such analysis explains why correlation scores for

head-weighted measures are lower, in general, compared to non-

head-weighted ones (Table 5).

7 CONCLUSION AND FUTUREWORK
Statistical significance testing is crucial to acquire reliable conclu-

sions from evaluation of IR systems. Therefore, we need IR evalua-

tion methods that do not make mistakes in ranking system pairs

with performance differences that are statistically significant. Thus,

the way we evaluate IR evaluation methods should also consider

statistical significance. However, existing rank correlation measures

either do not consider this important aspect at all or considers it

only in the true ranking but not in the predicted ranking.

In this work, we first analyzed runs from 11 TREC test collections

and showed that many TREC runs were actually not statistically-

different, suggesting that experiments on TREC collections with

ranking measures that are not aware of statistical significance can

cause inaccurate evaluation of methods. We then introduced two

new rank correlation measures, τSiд and τSiдH , that consider both

ranking and statistical significance. The proposed measures provide

two parameters to control the weight of statistical significance and



rank swaps. We also showed that τSiд and τSiдH can be reduced to

τ and τAP , respectively, with certain parameter setting. Finally, we

re-benchmarked IR evaluation methods in 4 different areas includ-

ing pooling, crowdsourcing, evaluation with incomplete judgments,

and automatic system ranking, using various rank correlation mea-

sures including τSiд and τSiдH . Results showed that the choice of

correlation measure affects conclusions drawn from the evaluations,

suggesting that the use of measures incorporating multiple aspects

of correlation leads to more reliable conclusions.

In the future, we plan to investigate the impact of the parameters

of our proposed measures to provide a suggested parameter setting

for specific evaluation scenarios. We would also like to conduct our

re-benchmarking experiments on a larger set of collections and on

a more diverse set of evaluation methods.
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