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Abstract

Modeling changes in individual crowd worker
performance over time offers new ways to im-
prove the quality of crowd labels, such as by
dynamically routing label annotation tasks to
workers more likely to produce reliable labels.
Whereas prior crowd annotator models have typ-
ically adopted a single generative approach, we
formulate a discriminative, flexible feature-based
model. This allows us to combine multiple gen-
erative models and integrate additional behav-
ioral evidence, enabling better adaptation to tem-
poral variance in worker accuracy. Experiments
with a public crowdsourcing data show that our
model improves prediction accuracy by 26-36%
across workers, enabling 29-47% improved qual-
ity of crowd labels to be collected at 17-45%
lower cost. Furthermore, we confirm that our
proposed model shows significantly accurate pre-
diction than baselines under limited supervision.

1. Introduction

Recent efforts in efficiently collecting labels at scale have
focused on how to collect high-quality labels with crowd-
sourcing (Alonso et al., 2008) (Vuurens & de Vries, 2012)
(Lease & Kazai, 2011). Since quality of labels critically in-
fluences the performance of learning models (Sheng et al.,
2008), a great deal of research has focused quality improve-
ment of crowd labels via various approaches: multiple la-
beling and aggregation (Venanzi et al., 2014), behavioral
effects investigation (Kazai et al., 2012), letting workers
select which tasks to work on (Law et al., 2011), and effi-
cient HIT (Human Intelligence Tasks) design (Ipeirotis &
Gabrilovich, 2014).

Predicting the quality of labels represents another oppor-
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tunity to improve quality of crowdsourced labels. For in-
stance, task routing in crowdsourcing (Yuen et al., 2012;
Bragg et al., 2014) requires a method to match a worker to
a task. One might route a label annotation task to a specific
worker based on prediction of that a worker’s correctness
and expect improved quality of labels as a result.

Prior work in predicting worker’ annotation performance
has typically relied upon a single generative feature, such
as accuracy, with an assumption that crowd labels are inde-
pendent and identically distributed (i.i.d) over time (Yuen
et al., 2012), (Yi et al.,, 2013). In practice, however,
crowd worker behavior can be seen to dynamically vary
over time, as shown in Figure 1. A worker may be-
come tired or bored, or begin multi-tasking, leading to de-
creased work quality. Alternatively, work quality may im-
prove as a worker’s experience with a given task accumu-
lates (Carterette & Soboroff, 2010). One could imagine
many features characterizing such behaviors.

To address this problem, we present a novel discrimina-
tive predictive model capturing various behavioral features
about a crowd worker, including temporal latent dynam-
ics. This approach allows us to combine multiple gener-
ative models and integrate time-series modeling, enabling
better adaptation to temporal variance in worker accuracy.

While existing time-series approach seeks to predict a
crowd worker’s next label more accurately by considering
temporal dynamics, it does not consider observable behav-
ioral features about a crowd worker. For this reason, we
propose a new generalized annotator model (GAM) that
utilizes a variety of features to flexibly capture a wider
range of worker behaviors to improve prediction perfor-
mance, as well as the quality of crowdsourced labels. We
integrate various features from prior studies which were
used only for the estimation of a crowd worker’s annotation
performance (Ipeirotis & Gabrilovich, 2014) or label sim-
ulation (Carterette & Soboroff, 2010). In addition, we de-
vise several new behavioral features indicating a worker’s
annotation performance over time and integrate them with
the existing features selected from prior studies.
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Figure 1. Two examples of failures of existing crowd annotator models and success of our proposed model, GAM in predicting the
correctness of workers’ next label ((a) high accuracy worker and (b) low accuracy worker). While the agreement of a crowd worker’s
labels with that of ground truth (GOLD) oscillates over time, the existing worker models (Time-series (TS) (Jung et al., 2014)), Sample
Running Accuracy (SA), Bayesian uniform beta prior (BA-UNI (Ipeirotis & Gabrilovich, 2014)) do not follow the temporal variation of
the workers’ agreement with the gold labels. On the contrary, GAM is sensitive to such dynamics of labels over time for higher quality

prediction.

We investigate this predictive model with a public crowd-
sourcing dataset. Firstly, we evaluate prediction quality,
both in terms of hard prediction (binary correct or not) and
soft prediction (probability of making a correct label). In
particular, we study the effect of a decision reject option,
which improves prediction accuracy by sacrificing predic-
tion coverage, providing a tuning parameter for aggressive
vs. conservative prediction given model confidence. Sec-
ondly, we evaluate the effectiveness of our predictive model
for crowdsourced label quality improvement under a real-
istic scenario assuming task routing and label aggregation.
Our empirical evaluation demonstrates that our model im-
proves prediction accuracy by 26-36% across 54 workers.
In addition, our experiments show that the quality of crowd
labels by our prediction model-based task routing improves
its accuracy by 29-47% with lower cost (17-45%). Finally,
we evaluate the performance of our prediction model un-
der a realisitic condition, which the number of gold labels
is limited. Our experiment shows that our model still per-
forms significantly better than the other baselines although
its prediction accuracy is impacted by limited supervision.
Our research questions are:

RQ1: Prediction Performance Improvement Can  we
effectively predict a crowd worker’s future work qual-
ity? How does decision rejection trade-off coverage
vs. accuracy of prediction in comparison to other
baselines?

RQ2: Impact on Label Quality and Cost. Can work
quality prediction be utilized to improve the quality
of crowd labels and/or decrease cost of collecting
labels?

RQ3: Impact of Limited Supervision on Prediction Model
How is our prediction model impacted by using only
a limited number of training labels?

2. Problem

In crowdsourcing and human computation, significant re-
search has focused on modeling crowd workers’ behavior
or performance (Raykar & Yu, 2012) (Rzeszotarski & Kit-
tur, 2011). However, most studies have assumed that each
annotation is independent and identically distributed (i.i.d)
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over time. In practice, crowd worker behavior can exhibit
temporal dynamics, as shown in Figure 1.

SFilter (Donmez et al., 2010), the closest work to our time-
series approach, is a Bayesian time-series model that cap-
tures crowd workers’ dynamically varying performance.
However, the authors do not learn the parameters for the
latent variable dynamics, but assume an uniform offset
and temporal correlation for the underlying dynamics, with
workers assumed to be weak learners following simple la-
tent dynamics z; = xs—1 + €;. Based on the fixed param-
eters, the latent variable is estimated using a variation of a
particle filter (cf. (Petuchowski & Lease, 2014)). Hence,
SFilter, evaluated entirely by simulation, is inconsistent
with what we see in real data, such as in Figure 1. In con-
trast, Jung et al. (Jung et al., 2014) relax the special condi-
tions (¢ = 0 and ¢ = 1) by proposing a general time-series
approach (z; = ¢ + ¢x;_1 + €). The principal difference
is to capture and summarize the underlying dynamics of
workers’ label correctness more accurately.

Apart from modeling temporal dynamics behind crowd
work, most prior work in crowdsourcing has focused on
simple estimation of workers’ performance via metrics
such as accuracy and F1 (Kazai, 2011) (Smucker & Jethani,
2011). Unlike other studies, Caterette and Soboroff pre-
sented several annotator models based on Bayesian-style
accuracy with various types of Beta priors (Carterette &
Soboroff, 2010). Recently, Ipeirotis and Gabrilovich pre-
sented a similar type of Bayesian style accuracy with a
different Beta prior in order to measure workers’ perfor-
mance (Ipeirotis & Gabrilovich, 2014). However, none
of these studies investigated prediction of a worker’s label
quality.

Figure 1 shows two real examples of existing annota-
tor models’ failures in predicting worker’s label correct-
ness. The more accurate left worker (a) begins with
very strong accuracy (0.8) which continually degrades over
time, whereas the accuracy of the right worker (b) hovers
steadily around 0.5. Suppose that a crowd worker’s next
label quality () is binary (correct/wrong) with respect to
ground truth. While y; oscillates over time, the existing
models are not able to capture such temporal dynamics and
thus prediction based on these models is almost always
wrong. In particular, when a worker’s labeling accuracy
is greater than 0.5 (eg., average accuracy = 0.67 in Figure 1
(a)), the prediction based on the existing models are always
1 (correct) even though the actual worker’s next label qual-
ity oscillates over time. A similar problem happens in Fig-
ure 1 (b) with another worker whose average accuracy is
below 0.5.

Problem Setting. We begin with a binary label annotation
problem in crowdsourcing. Suppose that a worker has com-
pleted n labels, and that for each label we also have ground

truth available. Our task is to predict whether or not a
worker’s next label will be correct, as defined by agreement
with ground truth. The correctness of the ith label is de-
noted as y; € {0, 1}, where 1 and O represent correct or not.
Thus, the performance of a worker can be represented as a
sequence of binary observations, y = [yl Yo .. yn] .
For example, if a worker completed five labels and erred on
the first and third respectively, then his binary performance
sequence is encoded asy = [0 1 0 1 1]. GOLD
in Figure 1 indicates y of each worker, which means the
binary correctness of each label.

For this problem, we propose a Generalized Annotator
Model (GAM) that allows us to flexibly capture a wide
range of workers’ behaviors by incorporating features
which model different aspects of this behavior. By this
ability to flexibly model more aspects of worker behavior,
we expect greater predictive power and an opportunity for
more accurate predictions.

We generate a multi-dimensional feature vector, z; =
[T @2 Tmi| per time i and use z; as an input
of a prediction function f. Prior annotator models only
consider a single generative feature z; by a single met-
ric, accuracy, and then use this feature as an input of sim-
ple link function y; 1 = roundOff (x;). Instead, our pro-
posed model incorporates a multi-dimensional feature vec-
tor z; and uses this feature vector with a learning frame-
work f(z;,y;) = yi+1. The bottom plot of Figure 1 shows
how GAM is able to track the worker’s varying correctness
with greater fidelity.

3. Method: Generalized time-varying
Annotator Model (GAM)

In this section, we present a generalizable feature-based an-
notator model that incorporates various observable and la-
tent features modeling different aspects of workers’ behav-
ior. We first examine feature generation and integration,
and then discuss learning a predictive model with the gen-
erated features.

3.1. Feature Generation and Integration

A worker’s behavior and annotation performance may be
captured by various types of features. In this study, we
generate and integrate two types of features shown in Ta-
ble 1: observable and latent features. Bayesian-style fea-
tures have various forms in prior work according to differ-
ent Beta prior settings. Among them, we adopt optimistic
(a Beta prior « = 16,3 = 1) and pessimistic (a Beta
prior « = 1,8 = 16) annotator models from Carterette
and Soboroff’s study (Carterette & Soboroff, 2010). In ad-
dition, we adopt a Bayesian style accuracy from Ipeirotis
and Gabrilovich’s study which assumes a Beta prior (o« =
0.5, 8 = 0.5), referred to here as the uni form annotator
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Feature Name

Description

Bayesian Optimistic Accuracy (BA,,:) (Carterette & Soboroff, 2010)

a Bayesian style accuracy with a prior Beta (16,1)
BAopt = (JL’t -+ 16)/(7145 + 17)

Bayesian Pessimistic Accuracy (BA,.;) (Carterette & Soboroft, 2010)

a Bayesian style accuracy with a prior Beta (1,16)
BApes = (Il?t + 1)/(7’% + 17)

Bayesian Uniform Accuracy (BA,,;) (Ipeirotis & Gabrilovich, 2014)

a Bayesian style accuracy with a prior Beta (0.5,0.5)
BAum' = (.”L‘t -+ 05/(7115 + 1)

Sample Running Accuracy (SA)

SAt =1’t/nt

© - e -
= CurrentLabelQuality a binary value indicating whether a current label is
z correct or wrong.
g TaskTime time to spend in completing this label annotation task. (ms)
o L a binary value indicating the absolute difference
AccuracyChangeDirection (ACD) between SA,_; — SA,.
. a binary value indicating a topic change between
TopicChange time ¢ — 1 and time ¢.
NumLabels a cumulative number of completed labels at time ¢.
TopicEverSeen a real value [0~1] indicatir;g the familiarity of a topic.
a number of labels on topic k at time t
a time-series accuracy estimated by latent time-series model
Asymptotic Accuracy (AA) (Jung et al., 2014) Y y “atent®
-~ proposed by Jung et al. =g
= ———
8 a temporal correlation indicating how frequently a sequence
3 ¢ (Jungetal, 2014) of correct/wrong observations has changed over time.

¢ (Jungetal., 2014)

a variable indicating the direction of labels
between correct and wrong.

Table 1. Features of generalized annotator model (GAM). n is the number of total labels and « is the number of labels at time ¢.

model. In these worker models, each Beta prior character-
izes each worker’s annotation performance. For instance,
the optimistic annotator model indicates that an worker
is likely to make a label in a permissive fashion, while
the pessimistic model tends to make more negative la-
bels than positive label. The uni form model has an equal
chance of making a positive or negative label. Note that
Bayesian style accuracies (BAypt, BApes, BAuni) were
only used as a way of simulating labels or estimating a
worker’s performance in the original studies. In this study,
we instead used these accuracies as a feature of estimating
a worker’s annotation performance as well as predicting a
worker’s next label correctness. Other observable features
include measurable features from a sequence of labels from
a worker. Among them, T'askTvme and NumLabels are
designed to capture a worker’s behavioral transition over
time. TopicChange checks the sensitivity of a worker to
topic variation over time. The TopicFEverSeen feature is
designed to consider the effect of growing topic familiarity
over time. The value is discounted by increased exposure
to topic k.

Latent features are adopted from Jung et al’s (Jung et al.,
2014) model of temporal dynamics of worker behavior (¢
and ¢). While they only used asymptotic accuracy (AA)
as an indicator of a worker’s annotation performance, we
integrate all three features (A A, ¢, and c) into our general-
ized annotator model. Our intuition is that each feature may
capture a different aspect of a worker’s annotation perfor-
mance and thus the integration of various features enabling
greater predictive power for more accurate predictions.

3.2. Predicting Label Quality

To select a learning model, we adopt L1-regularized lo-
gistic regression due to several reasons. Firstly, it supports
probabilistic classification as well as binary prediction by
logistic function. In our problem setting, we conflate multi
class labels into binary values (0 or 1), and thus logistic
regression is the best fit in order to handle such a binary
classification problem. In addition, a logistic regression
model allows us obtain the odds ratio, defined as the ratio of
the probability of correct over incorrect labels. Secondly,
L1-regularized logistic regression prevents over-fitting in
learning models due to either co-linearity of the covariates
or high-dimensionality. The regularized regression shrinks
the estimates of the regression coefficients towards zero rel-
ative to the maximum likelihood estimate. Finally, logistic
regression is relatively simple and fast. In practice, one of
the challenging issues to run learning algorithms is that it
takes too much time to update parameters and predict out-
put values once a new label comes. However, this model is
quite efficient.

In prediction, we consider a supervised learning task where
we are given N training instances {(x;,y;),i = 1,..., N}.
Here, each z; € RM is an M-dimensional feature vector,
and y; € 0,1 is a class label indicating whether a worker’s
next label is correct (1) or wrong (0). Before fitting a model
to our feature and target labels, we first normalize our fea-
tures in order to ensure that normalized feature values im-
plicitly weight all features equally in a model learning pro-
cess. Logistic regression models the probability distribu-
tion of the class label y given a feature vector X as follows:
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Here 0 = {Bo, 5T, ..., B, } are the parameters of the logis-
tic regression model; o (-) is the sigmoid function, defined
by the second equality. The following function attempts
to maximize the log-likelihood in order to fit a model to a
given training data.

N M
max{y [yi(Bo + 57 i) — log(1 + ¢* )] XY |85}
i=1 j=1

)

3.3. Prediction with Decision Reject Option

Our predictive model can generate two types of outputs: a
binary value predicting the correctness of a worker’s label
(0 or 1) and a continuous value (y;+1 € [0, 1]) indicating
the probability of making a correct label. While a binary
predictive value (hard prediction) can be used as it is, a
probabilistic predicted value (soft prediction) can be used
after a transformation, such as rounding-off. For instance,
if an original predicted value is 0.76, we could round this
to a binary predictive value of 1.

In term of soft prediction, there exists room for improving
its quality by taking account of prediction confidence. For
instance, if a value of soft prediction is close to 0.5, it fun-
damentally indicates very low confidence. Therefore, we
may avoid the risk of getting noisy predictions by adopting
adecision rejection option (Pillai et al., 2013). In this study,
we round off a probabilistic predictive value with a decision
reject option as follows. If y; 41 < 0.5—dory;41 > 0.5+6
then y; 1 does not need any transformation and use its orig-
inal value. If ;11 > 0.5 — Jor y; 41 < 0.5+ § then y; 11
is null, indicating the reject of decision. J is a parame-
ter to control the limits of decision reject option € [0, 0.5].
High ¢ indicates a conservative prediction which increases
the range of decision rejection while sacrificing coverage.
On the other hand, low ¢ allows prediction in a permissive
manner, decreasing the threshold of decision rejection and
increasing coverage.

4. Evaluation

Experimental Settings

Dataset. Data from the NIST TREC 2011 Crowdsourc-
ing Track Task 2 is used. The dataset contains 89,624
graded relevance judgments (2: strongly relevant, 1: rel-
evant, 0: non-relevant) collected from 762 workers rat-
ing the relevance of different Webpages to different search
queries (Buckley et al., 2010). We conflate graded judg-
ment labels into a binary scale (relevant / non-relevant). We
processed this dataset to extract the original temporal order
of the worker’s labels. We include 3,275 query-document

pairs which have ground truth by NIST assessors, and we
exclude workers making < 20 labels to ensure stable esti-
mation. Moreover, since the goal of our work is to predict
workers’ next label quality, we intentionally focus on pro-
lific workers who will continue to do this work in the future,
for whom such predictions will be useful. 54 sequential la-
bel sets are obtained, one per crowd worker. The average
number of labels (i.e., sequence length) per worker is 154.

Metrics. We evaluate the performance of our prediction
‘model with two metrics. Firstly, we measure the predic-
tion performance with accuracy and Mean Absolute Error
(MAE). Predicted probabilistic values (soft prediction) pro-
duced by our model are measured with MAE, indicating the
absolute difference between a predicted value vs. original
binary value indicating the correctness of a worker’s label:
MAE = 13" | |pred;—gold;|, where n is the number of
labels by a worker. Rounded binary labels (hard prediction)
are evaluated by accuracy. Secondly, accuracy is used for
measuring the prediction performance of the binary prob-
abilistic values from our prediction method. Since our ex-
tracted dataset is well-balanced in terms of a ratio between
positive vs. negative labels, use of accuracy is appropriate.

Models. We evaluate our proposed Generalized Annotator
Model (GAM) under various conditions of decision reject
options with two metrics. Our initial model uses no deci-
sion reject option, setting = 0. In order to examine the
effect of decision reject options, we vary § € [0,0.25] by
0.05 step-size. Since we have 54 workers, we build 54 dif-
ferent predictive models and evaluate their prediction per-
formance and final label quality improvement.

Our model works in a sequential manner that updates the
model parameter § once a new binary observation value
(correct/wrong) comes. We use each worker’s first 20 bi-
nary observation values as an initial training set. For in-
stance, suppose a worker has 50 sequential labels. We
first collect a sequence of binary observation values (cor-
rect/wrong) by comparing a worker’s label with a corre-
sponding ground truth judged by NIST experts. Next,
our prediction model takes the first 20 binary observa-
tion values and then predicts the 21st label’s quality (cor-
rect/wrong) of this worker. Once actual 21st label comes
from this worker, we measure the accuracy and MAE by
comparing the label with a corresponding ground truth. For
the following 29 labels we repeat the same process in a se-
quential manner, predicting the quality of each label one-
by-one.

To learn our logistic regression model, we choose the
regularization parameter A as 0.01 after the investigation
of prediction performance with varying parameter val-
ues {0.1,0.01,0.001} over the initial training set of each
worker. For feature normalization, we apply standard min-
max normalization to the 13 features defined in Section 3.1.
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[ Metric | GAM [ TS | BAyy | BAy | BAy, | 54 |
Accuracy 0.802* | 0.621 | 0.599 | 0.601 | 0.522 | 0.599
% Improvement NA 29.1 33.9 334 53.6 33.9
# of Wins NA 50 52 50 54 52
# of Ties NA 3 1 3 0 1
# of Losses NA 1 1 1 0 1
MAE 0.340* | 0.444 | 0.459 | 0.448 | 0.488 | 0.458
% Improvement NA 23.4 259 24.1 33.0 25.8
# of Wins NA 53 53 53 54 53
# of Losses NA 1 1 1 0 1

Table 2. Prediction performance (Accuracy and Mean Average
Error) of different predictive models. % Improvement indicates an
improvement in prediction performance between GAM vs. each

baseline (%). # of Wins indicates the number of
workers that GAM outperforms a baseline method while # of
Losses indicates the opposite of # of Wins. # of Ties indicates the
number of workers that both a method and GAM show the same
prediction performance for a worker. (*) indicates that GAM pre-
diction outperforms the other six methods with a high statistical

significance (p<0.01).

Note that A is the only model parameter we tune, and all
settings of decision-reject parameter are reported in results.

As a baseline, we consider several crowd annotator mod-
els proposed by prior studies (Carterette & Soboroff, 2010)
(Ipeirotis & Gabrilovich, 2014) (Jung et al., 2014) (Sec-
tion 3.1). We adopt two annotator models from Carterette
and Soboroft’s study, optimistic annotator (BA,,:) and
pessimistic annotator (B Ap.s), and one annotator model
of Bayesian accuracy (BA,,;) used in Ipeirotis and
Gabrilovich’s study (see Table 1). In addition, we test the
performance of a time-series model (1°S) proposed by Jung
et al (Jung et al., 2014) and sample running accuracy (S A)
as defined by Table 1. All of the baseline methods predict
the binary correctness of the next label ;. by rounding off
the worker’s estimated accuracy at time i. Decision reject
options are equally applied to all of the baseline methods.

4.1. Experiment 1 (RQ1): Prediction Performance
Improvement

To answer our first research question, we compare the over-
all prediction performance (Accuracy, MAE) of GAM with
the baseline models across 54 crowd workers. Table 2
shows that GAM prediction performance outperforms all
of the baseline methods across 50-54 workers in accuracy
and 53-54 workers in MAE. GAM improves the predic-
tion accuracy (hard label) and MAE (soft label) by 26-36%
on average. GAM prediction errs for only one worker vs.
the baselines. However, even for this worker, GAM only
made one or two more prediction errors in comparison to
the other baselines.

Furthermore, we examine the effects of decision reject op-
tions on GAM prediction. Figure 2 demonstrates that the
baseline models show sharp decline of coverage in predic-
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Figure 2. Prediction performance (MAE) of workers’ next labels
and corresponding coverage across varying decision rejection op-
tions (6=[0-0.25] by 0.05). While the other methods show a sig-
nificant decrease in coverage, under all of the given reject options,
GAM shows better coverage as well as prediction performance.

tion in order to significantly improve their prediction ac-
curacies. However, the coverage of GAM prediction only
gently decreases; even with the second strongest reject op-
tion (0 = 0.2), it still covers almost the half of prediction.
In sum, GAM prediction not only outperforms the baseline
models in terms of prediction accuracy, but it also shows
less sensitivity to the increase of the decision reject option.

4.2. Experiment 2 (RQ2): Impact on label quality and
cost

Our next experiment is to examine quality effects on crowd
labels via the proposed prediction model. We conduct an
experiment based on task routing. For instance, if the pre-
diction of a worker’s next label indicates that the worker
is expected to be correct, we route the given example to
this worker and measure actual label quality against ground
truth labeled by NIST. From our dataset, we only use 826
examples that have more than three crowd labels per exam-
ple. Since the average number of workers per example is
about 3.7, we test the cost saving effect with varying three
task routing scenarios (Number of Workers = {1, 2, 3}). La-
bel quality is measured with accuracy, and a paired t-test is
conducted to check whether quality improvement is statis-
tically significant.

Table 3 shows the results of label quality via predictive
model-based task routing. GAM substantially outperforms
the other baselines across three task routing cases. The im-
provement of final label quality grows with the increase of
the number of workers per example (Number of Judges)
from 29-32% to 36-47%. Notice that GAM with only two
routed workers achieves 29% quality improvement. More-
over, GAM provides high-quality crowd labels (accuracy
> 0.8) with only 54% = (5%) of the original assessment
cost. In contrast, we see that task routing with baselines

Method
0_GAM
1.TS

—=— 2 _BA_uni

—+— 3_BA_opt
4_BA_pes

5_SA
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Prediction Models for Task routing No Routing
Number of Workers | GAM [ TS [ BAuni | BAgy | BAyes | SA | Random | All labels
1 0.786* | 0.604 | 0.578 | 0.582 | 0.558 | 0.569 0.556
% Improvement NA 30.1 36.0 35.1 40.9 38.1 41.4
2 0.816%* | 0.617 | 0.592 | 0.595 | 0.574 | 0.582 0.572 0.595
% Improvement NA 32.3 37.8 37.1 42.2 40.2 427 ’
3 0.880* | 0.647 | 0.608 | 0.623 | 0.598 | 0.608 0.581
% Improvement NA 36.0 44.7 41.3 47.2 44.7 51.5

Table 3. Accuracy of labels via predictive models. Number of Workers indicates the number of workers per example. When the Number
of workers > 1, majority voting is used for label aggregation. Accuracy is measured against ground truth. % Improvement indicates an

improvement in label accuracy between GAM vs. each baseline

( (GAM —baseline

) ). The average number of workers per example is 3.7.

baseline

(*) indicates that GAM prediction outperforms the other six methods with high statistical significance (p<<0.01).

alone (BAyni,BApes,SA) may not be any better than ran-
dom assignment.

4.3. Experiment 3 (RQ3): Impact of limited
supervision

In practice, it may be challenging to have gold labels, such
as NIST expert labels, to judge the binary correctness of
each crowd worker’s label. To relieve this concern, our
last experiment investigates to what extent our prediction
model is influenced by limiting the number of training la-
bels.

While our earlier experiments (Experiment 1-2) assumed
the existence of gold labels to judge the binary correct-
ness of all crowd worker labels, we now limit the num-
ber of training labels by assuming that we only have a
small number of gold labels. In this setting, for instance,
given 50 labels by a crowd worker, our prediction model
is trained with only the 10 initial training labels (binary
correctness) and then predicts the binary correctness of the
crowd worker’s remaining 40 labels. We investigate the
effect of the limited number (k) of training labels on the
prediction accuracy of our prediction model by changing k
from 11 to 30.

Figure 3 shows how our prediction model (GAM) and the
other prediction models perform under varying the number
(k) of training labels. Note that GAM shows significant im-
provement of prediction accuracy as the size of k increase.
When £ is relatively small (between 10-15), its prediction
accuracy ranges from 0.6 to 0.66. As training labels are ad-
ditionally provided, its prediction performance tends to im-
prove up to 0.70. On the contrary, all other baseline mod-
els except BApgs do not show noticeable improvement of
prediction accuracy in spite of the increase of training la-
bels. In terms of BApgg, prediction accuracy is still very
low even though it steadily increases it prediction perfor-
mance with the increase of training labels. In sum, this ex-
periment demonstrates that the prediction performance of
GAM improves steadily with the increase of training labels
and its prediction accuracy is significantly higher than the
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Figure 3. Impact of limited supervision on prediction perfor-
mance. The X-axis indicates the number of gold labels which
are used for learning each predictive model. The Y-axis indicates
the mean prediction accuracy across 54 workers.

other baseline models. In addition, its prediction accuracy
is reasonably good (0.7) despite using the limited number
of training labels.

Table 4 shows the comparison of prediction performance
between GAM vs. the other prediction models when us-
ing only 30 training labels. Since we already confirmed
that MAE shows a similar pattern to accuracy, we only re-
port prediction accuracy of each model in this experiment.
In comparison to Table 2, overall prediction accuracy de-
creases due to the limited number of training labels. How-
ever, GAM outperforms the other baseline models by 15.3-
44.0%. With regards to win/loss, GAM still outperforms
the baseline models by 83.3-91.1%.

Figure 4 plots for each worker the difference in predic-
tion accuracy between GAM vs. the best possible base-
line for that worker (i.e., oracle selection). We choose
to use the best possible baseline for each worker to pro-
vide the most conservative analysis of lower-bound, rela-

26 27 28 29 30
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Metric H GAM \ TS \ BAyni | BAopt \ BApes \ SA ‘
Accuracy 0.705* | 0.611 | 0.593 | 0.573 | 0.490 | 0.569
% Improvement NA 15.3 18.9 23.1 44.0 23.9
# of Wins NA 40 41 41 46 41
# of Ties NA 6 9 8 3 9
# of Losses NA 8 4 5 5 4
Winning Ratio (%) NA 83.3 91.1 89.1 90.2 91.1

Table 4. Prediction accuracy of different predictive models with limited supervision (k=30). % Improvement indicates an improvement
in prediction performance between GAM vs. each baseline (W) # of Wins indicates the number of workers that GAM
outperforms a baseline method while # of Losses indicates the opposite of # of Wins. # of Ties indicates the number of workers that both

a method and GAM show the same prediction performance for a worker. Winning Ratio (%) means a number of wins over the total

.. (NumberofWins)
number of predlctlons ( NumberofWins+Numberof Losses

high statistical significance (p<0.01).

tive improvement provided by GAM. While T'S is selected
in the most workers (70%, 38 workers), BAynr1, SA, and
BAoppr are selected in the rest of the cases. We observe
the similar pattern in Figure ?? that GAM significantly im-
proves prediction accuracy for workers whose labeling ac-
curacy ranges from 0.4-0.6. In other words, despite limited
supervision, our prediction models shows significant im-
provement of prediction accuracy for noisy workers while
the other baseline models show relatively poor performance
in predicting the correctness of noisy workers’ next labels.

Prediction Performance Improvement
(GAM vs. baseline)
°
2
|

Assessors' Labeling Accuracy

Figure 4. Relative difference of prediction accuracy (GAM-
baseline) vs. workers’ labeling accuracy under limited supervi-
sion (30 gold labels). The best possible baseline is selected per
worker. The x-axis indicates a worker’s labeling accuracy. The
y-axis indicates the relative difference of prediction accuracy be-
tween GAM vs. the baseline.

To sum up, our last experiment demonstrates that GAM still
performs significantly better than the other baseline models
in terms of predicting a crowd worker’s next label quality
given limited number of training labels. In particular, GAM
allows us to predict noisy workers’ label quality more ac-
curately than the other baselines. This result demonstrates
that our prediction model can indeed be utilized in practice
with only a small number of gold labels.

). (*) indicates that GAM prediction outperforms the other five methods with a

5. Conclusion and Future Work

Despite recent efforts of quality improvement in crowd-
sourced labels, prior work in crowd worker modeling can-
not adequately predict a worker’s next label quality since
it simply measures worker performance via a single gen-
erative model without considering temporal effects among
labels. We present a general discriminative learning frame-
work for integrating arbitrary and diverse evidence for tem-
poral modeling and prediction of crowd work accuracy.
Our experiments demonstrate that the proposed model
improves prediction performance by 26-36% as well as
crowdsourced labels quality by 29-47% at 17-45% lower
cost. Furthermore, we confirm that our model still performs
significantly better than the other baselines under limited
supervision with modest performance degradation.

As a next step, we plan to relax our restrictive assumption
of the existence of gold labels to judge the correctness of
a worker’s labels. Beyond that, we plan to further inves-
tigate how to use this model for different applications of
quality assurance in crowdsourcing, such as weighted label
aggregation and spam worker filtering.
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