Correlation, Prediction and Ranking of Evaluation Metrics in Information Retrieval

Soumyajit Gupta, Mucahid Kutlu, Vivek Khetan, and Matthew Lease

So many metrics...

- More than 100 metrics
- Limited time and space to report all

$$precision = \frac{|\{relevant\ documents\} \cap \{retrieved\ documents\}|}{|\{retrieved\ documents\}|}$$

$$recall = \frac{|\{relevant\ documents\} \cap \{retrieved\ documents\}|}{|\{relevant\ documents\}|}$$

$$AveP = rac{\sum_{k=1}^{n} (P(k) \times rel(k))}{number of relevant documents}$$

$$ext{MRR} = rac{1}{|Q|} \sum_{i=1}^{|Q|} rac{1}{ ext{rank}_i}.$$

$$F = rac{2 \cdot ext{precision} \cdot ext{recall}}{(ext{precision} + ext{recall})}$$

$$ext{nDCG}_{ ext{p}} = rac{DCG_{p}}{IDCGp}.$$

Which ones should we report?

Challenge in system comparisons

	MAP	P@10	P@30	NDCG
QL	0.3043	0.5560	0.4980	0.5475
SRM	0.3110	0.5700	0.5060	0.5502
RQLM	0.3161^{\ddagger}	0.5960^{\ddagger}	0.5120	0.5601^{\ddagger}
RW+RQLM	0.3132^{\dagger}	0.5840^{\ddagger}	0.5067	0.5579^{\ddagger}
RM	0.3540^{\ddagger}	0.5800^{\ddagger}	0.5440^{\ddagger}	0.5797^{\ddagger}
RW+RQLM+RM	$0.3617^{\ddagger*}$	$0.6080^{\ddagger*}$	0.5580^{\ddagger}	$0.5866^{\ddagger*}$

Table 3: Retrieval performance on the TREC 2005 Terabyte Track queries (test).

Table 1: Top results for TREC-TB 2005

Run	p@20	CPUs	Time per
			query (ms)
MU05TBy3	0.5550	8	24
uwmtEwteD10	0.3900	2	27
MU05TBy1	0.5620	8	42
zetdist	0.5300	8	58
pisaEff4	0.3420	23	143

Taken from two different papers

If paper A reports metric X and paper B reports metric Y on the same collection, how can I know which one is better?

Some ideas...

- Run them again on the collection
 - Do they share their code?
- Implement the methods
 - Is it well explained in the paper?
- Check if there is any common baseline used against and compare indirectly?

Our Proposal

- Wouldn't be nice to predict a system performance based on metric X using its performance on other metrics as features?
- Here is the general idea
 - Build a classifier using only metric scores as features
 - Predict the unknown metric using the known ones
 - Compare systems based on predicted score with some confidence value
- Going back to our example:
 - Predict A's P@20 score using its MAP, P210, P@30 and NDCG score
 - Compare A's predicted P@20 with B's actual P@20

	MAP	P@10	P@30	NDCG	
m QL	0.3043	0.5560	0.4980	0.5475	
SRM	0.3110	0.5700	0.5060	0.5502	
RQLM	0.3161^{\ddagger}	0.5960^{\ddagger}	0.5120	0.5601^{\ddagger}	
RW+RQLM	0.3132^{\dagger}	0.5840^{\ddagger}	0.5067	0.5579^{\ddagger}	
RM	0.3540^{\ddagger}	0.5800^{\ddagger}	0.5440^{\ddagger}	0.5797^{\ddagger}	
RW+RQLM+RM	V+RQLM+RM 0.3617 [‡] *		0.5580^{\ddagger}	$0.5866^{\ddagger*}$	

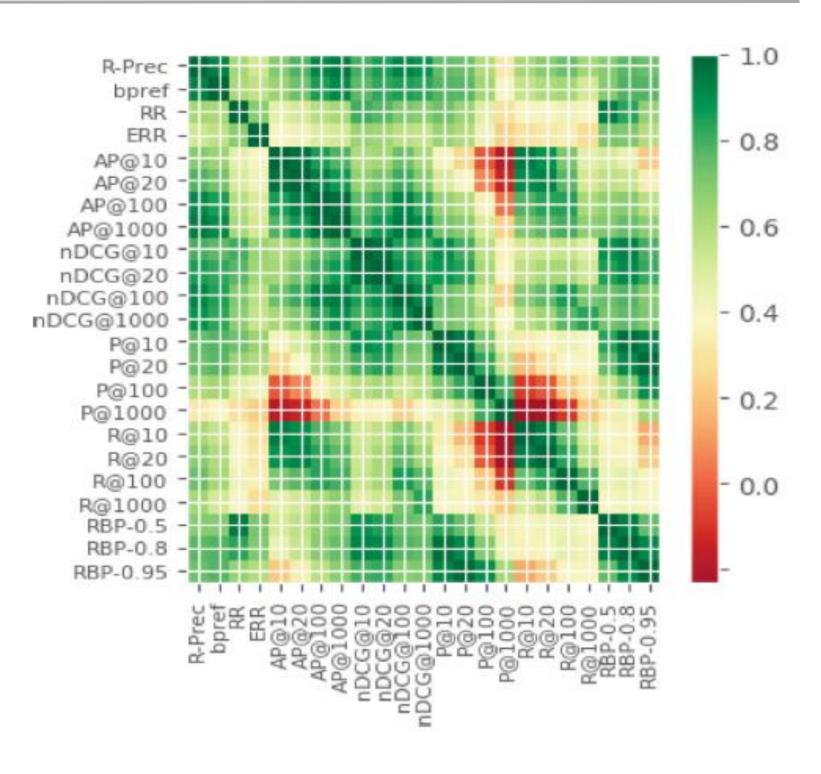
Table 3: Retrieval performance on the TREC 2005 Terabyte Track queries (test).

Table 1: Top results for TREC-TB 2005

Run	p@20	CPUs	Time per
			query (ms)
MU05TBy3	0.5550		24
uwmtEwteD10	0.3900	2	27
MU05TBy1	0.5620	8	42
zetdist	0.5300	8	58
pisaEff4	0.3420	23	143

Correlation between Metrics

Test Set	Document Set	#Sys	Topics
WT2000 [22]	WT10g	105	451-500
WT2001 [49]	WT10g	97	501 - 550
RT2004 [48]	TREC $4\&5^{\boxtimes}$	110	301-450,
			601-700
WT2010 [14]	ClueWeb'09	55	51-99
WT2011 [13]	ClueWeb'09	62	101 - 150
WT2012 [15]	ClueWeb'09	48	151-200
WT2013 [16]	ClueWeb'12	59	201 - 250
WT2014 [17]	ClueWeb'12	30	251-300



- Goal: investigate which K evaluation metric(s) are the best predictors for a particular metric
- Training data: System average scores over topics in WT2000-01, RT2004, WT2010-11 collections.
- Test data: WT2012, WT2013, and WT2014
- Learning algorithms: Linear Regression and SVM
- Approach:
 - For a particular metric, we try all combinations of size K using other evaluation metrics on WT2012
 - Pick the highest and apply it on WT2013 and WT2014

Prediction Results

Predicted	Predicted Independent Variables		riables	WT2012		WT2013		WT2014	
Metric			_	au	R^2	au	R^2	au	R^2
	R-Prec	-	_	0.885	0.754	0.824	0.667	0.952	0.819
MAP	R-Prec	nDCG	_	0.904	0.894	0.905	0.760	0.958	0.897
	R-Prec	nDCG	RR	0.924	0.916	0.901	0.779	0.947	0.922
	bpref	-	_	0.805	-2.101	0.885	-0.217	0.915	-2.008
nDCG	bpref	GMAP	-	0.803	-0.079	0.809	0.574	0.872	0.024
	bpref	GMAP	RBP(0.95)	0.794	-0.113	0.801	0.556	0.850	-0.032
	RBP(0.8)	-	-	0.884	0.942	0.832	0.895	0.866	0.893
P@10	RBP(0.8)	RBP(0.5)	-	0.941	0.994	0.882	0.966	0.914	0.988
	RBP(0.8)	RBP(0.5)	RR	0.946	0.994	0.885	0.968	0.914	0.987
	R-Prec	-	_	0.824	0.346	0.651	-0.786	0.607	-2.401
RBP(0.95)	bpref	P@10	-	0.911	0.952	0.718	0.873	0.728	0.591
	bpref	P@10	RBP(0.8)	0.911	0.967	0.720	0.868	0.744	0.639
	R@100	-	-	0.899	0.708	0.871	0.624	0.935	0.019
R-Prec	R@100	RBP(0.95)	_	0.909	0.952	0.820	0.882	0.820	0.759
	R@100	RBP(0.95)	GMAP	0.924	0.970	0.833	0.914	0.841	0.825

Which metrics should I report?

Ranking Metrics

- Metrics do have correlation
 - Why do we need to report correlated ones?
- Goal: Report the most informative set of metrics
 - NP-Hard problem
- Iterative Backward Strategy:
 - Start with a full set of covariance of metrics
 - Iteratively prune less informative ones
 - Remove the one that yields maximum entropy without it
- Greedy Forward Strategy
 - Start with a empty set
 - Greedily add most informative ones
 - Pick the metric that is most correlated with all the remaining ones

Metrics ranked by each algorithm

3. NDCG@1000|4. RBP-0.95 1. MAP@1000 2. P@1000 5. ERR 6. R-Prec 7. R@1000 IB8. bpref 9. MAP@100|10. P@100 11. NDCG@100|12. RBP-0.8 13. R@100 14. MAP@20|15. P@20 19. MAP@10|20. P@10 16. NDCG@20 17. RBP-0.5 18. R@20 21. NDCG@10 |22. R@10|23. RR 1. MAP@1000 2. P@1000 3. NDCG@1000 4. RBP-0.95 5. ERR 9. MAP@100|10. P@100 GF 6. R-Prec 7. bpref 8. R@1000 11. RBP-0.8 12. NDCG@100|13. R@100 14. MAP@20|15. P@20 16. RBP-0.5 17. NDCG@20 18. R@20 19. P@10 20. MAP@10 21. NDCG@10 22. R@10 23. RR

Conclusion

- Quantified correlation between 23 popular IR metrics on 8 TREC test collections
- Showed that accurate prediction of MAP, P@10, and RBP can be achieved using 2-3 other metrics
- Presented a model for ranking evaluation metrics based on covariance, enabling selection of a set of metrics that are most informative and distinctive.

Thank you!

This work was funded by the Qatar National Research Fund, a member of Qatar Foundation.

