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Abstract
The field of Information Retrieval (IR) changed profoundly at the
end of the 1990s with the rise of Web Search, and there are parallels
with developments in Artificial Intelligence (AI) happening today
with the advent of ChatGPT, Large Language Models, and Genera-
tive AI. We acknowledge that there are clear differences between IR
and AI. For example, IR is a much smaller field, and new problems
arise, like data contamination that may affect benchmark-based
evaluation of AI systems. But looking through the lens of an IR
researcher, there are many striking similarities between the two
fields of IR (25 years ago) and AI (today), and many topics appearing
in discussions in AI resemble those of 25 years ago in IR: bench-
mark reliability and robust evaluation, reproducibility of results
for non-public models, privacy and copyright issues, efficiency and
scalability, etc. In this paper, we discuss similarities and differences
between IR and AI and then derive some lessons learned in the
field of IR as a list of recommendations – urging the IR community
to reflect on, discuss, and convey these lessons to the AI field. We
believe that a joint community effort by all IR researchers is both
necessary and dutiful to obtain a fruitful discussion and research
advancements with the AI community.

CCS Concepts
• Information systems→ Information retrieval; • Computing
methodologies→ Artificial intelligence.
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1 Introduction
Originally, Information Retrieval (IR) was about designing systems
to support librarians help visitors of a library find relevant content
in the library catalog. Then, since the introduction of the Web, the
IR field moved to finding relevant content online. In 1997, Google
search was released to the public, and this disrupted the field: the
outsider reaction was “Google has solved IR, so why are you still
doing IR research?” while insiders wondered if any research was
possible without large query logs; meanwhile in the following years
the best and brightest students left academia andwere recruited into
Big Tech. The last 25 years showed, however, that the community
not only survived, but continued to improve: IR research thrived in
an ecosystem where industry and academic research produced sig-
nificant contributions to the world of search. Research (re)focused
onto key open problems (evaluation, reproducibility, conversational
search, efficiency, domain-specific, etc.). The proliferation of Web
search engines also created new research challenges for the IR
community (e.g., product and job search, improving ranking from
implicit feedback gathered from click data, image search, etc.) These
advancements not only created a richer research environment in IR,
but also informed the development of techniques and methods in
other fields (e.g., more robust evaluation of recommender systems).

Today, after the launch of ChatGPT, it can be argued that the
field of Artificial Intelligence (AI) is in a similar situation to IR in
the 1990s. We hear that “natural language processing is a solved
problem”, and the issue of a migration from academia to private
companies is discussed widely. While we will claim that AI today
can benefit from a clear understanding of the evolution of the
IR field in response to the Web search disruption, we make clear
that these fields are not exactly the same. The IR community is
much smaller. The area of AI spans many sub-disciplines, such that
discussions within the area of AI can have a higher conflictuality.
While we see interest in AI in research topics that are well known
to IR researchers, including reliability and robustness of evaluation
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benchmarks, reproducibility of results, privacy and copyright issues,
efficiency and scalability, and so on, completely new problems are
encountered as well, like data contamination for benchmark-based
evaluation of AI systems.

Yet, we observe striking similarities between the two fields of IR
(25 years ago) and AI (today). This paper aims to raise awareness
within the IR community about the need of consolidating key rec-
ommendations for the field of AI, to contribute to a discussion that
is already ongoing [61, 79, 85, 131]. To achieve this, we summarize
the current events that affect AI research, describe the similarities
with, and the differences from, IR, and we reflect on lessons learned
in the field of IR to suggest an initial draft of recommendations that
the IR community could make to the AI field today.

Tongue in cheek, we acknowledge right from the very start of
the paper that in this first step we are ‘preaching to the choir’ by
targeting an IR conference. We believe this call to action to the IR
community is both timely and urgent. By engaging in discussions
about our field’s core contributions, past mistakes, and the lessons
learned, we can consolidate our knowledge to be shared beyond
our domain.

2 Background
2.1 AI and IR
Properly defining AI in detail is well beyond the scope of this paper.
The simple incipit of the Wikipedia page, stating that AI “in its
broadest sense, is intelligence exhibited by machines, particularly
computer systems” [1] will suffice, although we notice that even
the most authoritative AI textbook [133] adopts quite a radical
approach based on the notion of rational agent.

Although according to Wooldridge “for [many machine learning
experts], AI is the long list of failed ideas” [176, end of Ch. 5], we
consider AI as a general field encompassing Machine Learning and
Deep Learning (as many do). This paper is motivated by Genera-
tive AI (GenAI) and Large Language Models (LLMs), arguably the
two recent contributions that are causing disruption in the AI field
at large, and even outside it. Similarly, we consider ‘information
retrieval’ broadly: not just to address the specific ranking prob-
lem, but to understand how to satisfy users’ information needs.
In our discussion we will refer to other related fields, as Natural
Language Processing (NLP), Recommender Systems (RecSys), or
Human-Computer Interaction (HCI). We will also refer to both the
research fields and the research communities, i.e., the researchers –
people – working in them.

Both AI and IR have a long history, and people have argued about
their relative position for many years. The same AI Wikipedia page
states that “High-profile applications of AI include advanced web
search engines (e.g., Google Search); recommendation systems (used
by YouTube, Amazon, and Netflix)”, but this is controversial at least.
For example, Wilks contributed a very interesting perspective to
the book in memory of Karen Spärck Jones [174]:

. . . the field of [IR], one of similar antiquity to AI, but with which it has
until now rarely tangled intellectually, although on any broad definition
of AI as “modelling intelligent human capacities”, one might imagine
that IR, like machine translation (MT), would be covered; yet neither has
traditionally been seen as part of AI. On second thoughts perhaps, IR does
not fall there under that definition simply because, before computers,

humans were not in practice able to carry out the kinds of large-scale
searches and comparisons operations on which IR rests.

A recent paper written in response to informal and unsubstanti-
ated claims that “surely, IR will now be replaced by LLMs”, argues
that IR is not an AI problem, and should not be studied as one [151]:

IR is not a subfield of AI, nor a set of tasks to be solved by AI. It is an
interdisciplinary space that seeks to understand how technology can be
designed to serve ultimately human needs relating to information.

Perhaps the main difference between the two areas is indeed
the focus on machines as a tool for humans to deploy, versus the
machines as technology that might some day act just like (or, replace
or even “superstitute”) the human; with some researchers even
seriously considering AIs that might “go rogue” [112].

Connections between AI and IR do exist. An obvious one is, for
example, the advent of Retrieval-Augmented Generation (RAG),
combining the strengths of retrieval-based and generative models
[78, 142]. Studies on RAG models have emphasized the impact of
retrieved document quality, ordering, and even the inclusion of
seemingly irrelevant information [33]. As we discuss in Section
3.2.2, work on prompt engineering to improve GenAI answers par-
allels a long history of work in IR on effective query formulation
to boost retrieval effectiveness. More generally, NLP and IR share
a long and special history of blurred overlap [76], and perhaps no
task has evidenced this more than question answering [161]. To
oversimplify, IR was used to retrieve documents while NLP sys-
tems were used to extract answers from those documents. While
traditional question answering systems typically extracted answers,
RAG systems modernize this traditional IR/NLP architecture to
search arbitrary sources for desired information and then incorpo-
rate it into generated answers.

2.2 IR in the 1990s
The 1990s was a point where search was transformed [144]. At the
start of the decade, the IR community was largely split into two
sides that had little in common: academic and commercial. On the
academic side, IR researchers examined ranking methods mostly
driven by variants of Salton et al.’s vector space model [143] with
some exploration of probabilistic approaches. Evaluation was based
on very small-scale test collections. A number of commercial com-
panies offered online search to current newspaper and commercial
data, which was searched through Boolean queries via a command
line interface. These systems were difficult to use (the Boolean syn-
tax required specialists, the “search intermediaries”, to search on
other people’s behalf), and costly.

In the first half of the 1990s, thanks to the TREC collections,
academic evaluation started to become larger scale and ranking
algorithms had to be adjusted to the more diverse set of documents
that camewith these bigger collections. This led to the emergence of
the BM25 ranking function [129]. At a similar time, it became clear
that search would be a key way of accessing the emerging World
Wide Web. Because of the scale of the Web, Boolean search was
simply inadequate; consequently creators of web search engines
looked for solutions from academia to build better rankers.

By the second half of the 1990s, it was clear that the web search
creators were finding it necessary to develop their own solutions to
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cope with the scale, diversity, and noise present in web search con-
tent. Such solutions were evaluated based on large-scale empirical
experiments conducted on the customers of those search engines,
providing insights unavailable to the academic community. With
access to substantial computing resources and vast query interac-
tion logs, it started to become clear that the commercial web search
world was able to obtain insights that the academic community
would struggle to achieve.

By the end of the decade, the web search engines had come
to dominate commercial search services, most of the subscription
services running in the early 1990s had gone out of business. Web
search was ubiquitous, fast and free, driven by advertising. The
web search companies drew ideas from the academic community,
but the academic community needed to find new challenges.

2.3 AI Today
The field of AI has experienced significant transformations. Initially,
AI systems relied on search, explicit knowledge representation, pre-
defined rules, and logic to perform tasks [29, 175]. However, the
limitations of these approaches, classified under the label of Good
Old Fashioned AI (GOFAI) [57], led to the adoption of probabilistic
methods capable of handling uncertainty [115–117] and learning
from data [80, 153]. This shift, combined with the transition from
traditional machine learning to deep learning [65, 77], has allowed
the advancement of research across various domains, including
computer vision [72], natural language processing [19], healthcare
tasks like protein folding prediction [66], and games [102, 155]. The
introduction of the transformer architecture in 2017 revolutionized
natural language processing, leading to the creation of LLMs capa-
ble of understanding and generating human-like text [38, 111, 125],
and even mastering complex tasks [20, 123]. Such architecture then
expanded and reached state-of-the-art effectiveness in multiple do-
mains: reinforcement learning [30], vision [39], audio processing
[124], and even bio-medical applications [158]. Despite their signifi-
cant impact in different domains, there is ongoing debate regarding
the true capabilities of recent models [7, 83, 95–97].

A clear example of such advancements in AI techniques is Ope-
nAI’s ChatGPT, which has brought AI into widespread public use
and influenced multiple fields [67]. These models have not only
demonstrated impressive conversational capabilities (even viewed
by some as the first signs of Artificial General Intelligence, AGI
[21]) but have also integrated IR components to improve their ef-
fectiveness. It can be argued that ChatGPT is for AI today what
Google was for IR in the 1990s. In the rest of this paper we analyze
this analogy more in detail, starting with discussing the similarities
in the next section (see Table 2 in Appendix A for a summary).

3 Similarities
3.1 Benchmark-based Evaluation
3.1.1 Benchmarks and metrics. A key strength of the IR commu-
nity has been the strong focus on evaluation methodologies. Offline
evaluation through benchmarks (test collections) has enabled the
community to conduct repeatable experiments at scale and has
been vital in enabling the ongoing reporting of comparable sys-
tem effectiveness results. The approach, often referred to as the
“Cranfield methodology” [166], has in particular benefitted from key

international evaluation fora including TREC [165], NTCIR [141],
CLEF [44], and FIRE [48], attracting hundreds of participants annu-
ally to evaluate their systems using common evaluation testbeds,
and substantial resources are devoted to developing test collections
that correspond to different search tasks (e.g., web search, question
answering, biomedical search, and so on). Online evaluation has
provided a complementary approach to measuring system effec-
tiveness for online IR tools with large numbers of users, enabling
the deployment of methodologies such as A/B testing [60].

A key feature of ongoing research into the evaluation of IR sys-
tems using test collections has been the development of a multitude
of different effectiveness metrics. In essence, each metric provides
a way of distilling a search results list, annotated with relevance
judgments, into a measure of how well a search system has per-
formed, based on an underlying user model [163] and a notion of
task that the user is performing.

In AI, benchmark-based evaluation is similarly used extensively
for the evaluation of systems, with the development of a range of dif-
ferent evaluation testbeds that aim to be representative of different
“tasks” or domains. Common benchmark examples include ARC-C
[32], CRASS [46], HellaSwag [178], MMLU [59], OpenBookQA [90],
RACE [73], and SciQ [171]. More recently, “Humanity’s Last Exam”
has gained attention for its ambitious attempt to assess LLMs on a
wide range of human-level cognitive skills [120]. Each of these has
an associated set of performance metrics (depending on the task,
accuracy, precision, recall or even popular IR metrics like nDCG)
to support the comparison of different systems in terms of their
effectiveness for a particular testbed (often called “leaderboards” in
the AI domain).

3.1.2 Reliability and robustness of benchmarks. A further similarity
between the two fields are important questions regarding the relia-
bility and robustness of benchmarks. These issues have been widely
discussed in the IR field, leading to a whole sub-area of evaluation
research.1 While similar considerations have been raised in the AI
field [37, 88, 177, 179], the speed at which new AI systems are being
released (together with the broad popularity of AI tools, including
coverage in the press and online) means that these issues are often
swept aside in favor of simplistic comparisons of numerical values,
often without reference to the many assumptions (and correspond-
ing limitations) that would give a more nuanced understanding of
system effectiveness [127]. Relatedly, there are concerns that focus-
ing mainly on aggregate statistics, such as test set accuracy, does
not give enough insight into the actual capabilities and robustness
of AI systems [51]; similar considerations previously arose in the
IR field, and led to extensive research efforts into more nuanced
understanding and measurement of IR effectiveness.

3.1.3 Reproducibility of evaluation results for non-public models.
Since the 1990s the web search “market” has been dominated by
a small number of key players, and these incumbents enjoy a sub-
stantial competitive advantage due to the size of their indexes and
capacities for serving millions or billions of queries per day. Compa-
nies including Google, Microsoft (Bing), Yahoo, Baidu, and Yandex

1Among many important considerations, some key examples include: Is the set of
search tasks representative? How many search tasks are needed to support general-
izability? Are the relevance judges representative of users? Who actually wrote the
queries? Are appropriate baselines being chosen for comparison purposes [9, 68]?
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engage with the research community to varying degrees (e.g., by
publishing research at academic conferences, and through research
internship programs). However, ultimately these are commercial
entities with an underlying profit objective, and the details of their
IR systems (including algorithms, implementation details, and user
data) are closely guarded commercial secrets. This of course has
substantial implications for research transparency and reproducibil-
ity – on the one hand, research using web-scale systems (e.g., using
search results produced by a web search engine, or using “real” user
data from millions of searchers) can be vital when seeking to under-
stand certain key questions around IR technologies. On the other
hand, the systems that lead to this data are “black boxes” from the
perspective of academic research, and the possibility of replicating
such work is typically small or non-existent. At the same time, there
are also a number of open source search systems available, such as
Elasticsearch [3], Swirl [4], and Terrier [164], and replicability is
not required for reproducibility, which can be obtained also when
dealing with proprietary and private systems or datasets [110].

The trajectory of GenAI’s explosion in popularity has followed
a similar path, with public awareness being associated with a small
number of key commercial systems (initially, OpenAI’s ChatGPT).
Like commercial search engines, popular commercial LLM-based
systems are the result of processing data at a vast scale that cannot
be reproduced by academic researchers, and the systems themselves
incorporate commercially sensitive details, making them “black
boxes”. Like search engines, there are a range of open source LLMs
available; popular examples include Llama [89] and Qwen [12].

3.2 Queries vs. Prompts
3.2.1 Query formulation vs. Prompt engineering. Interacting with
LLMs through natural language prompts closely parallels the long-
established process of query formulation in IR. Ideally, users would
express their needs naturally, but in practice, automated systems
often struggle with comprehension, requiring users to refine their
inputs iteratively. Initially, naive users may phrase queries conver-
sationally, then adjust them through trial and error to align with the
system’s expectations. In IR, librarians and automated tools helped
translate user intent into effective queries — a role now mirrored
in AI by prompt engineering research, which tackles ambiguity,
polysemy, and other linguistic challenges, much like earlier efforts
in search queries.

An interesting dynamic in user-system interaction is the self-
reinforcing cycle between user behavior and system optimization.
Initially, users adapt their inputs to match the system’s capabilities,
and in turn, the system optimizes for these inputs. When system
capabilities improve, users often remain unaware, continuing to use
outdated input styles, reinforcing the system’s existing optimiza-
tion patterns. Breaking this cycle has required strategies such as
introducing new input modalities (e.g., speech), redesigning inter-
faces to signal enhanced capabilities, and launching new systems
free from historical user expectations. The parallel is clear: in IR,
inputs are queries; in AI, they are prompts.

3.2.2 Query variation vs. Prompt variation. The impact of input
variations has long been a concern in IR, where even slight modifi-
cations to a query can yield substantially different retrieval results
[14, 71, 181]. Similarly, in GenAI, small changes in prompt design

can lead to significant and sometimes unpredictable differences in
LLM outputs [58, 99]. As prompting becomes a fundamental mech-
anism for interacting with LLMs, researchers have increasingly
focused on understanding the extent of this sensitivity, challenging
the assumption that scaling up model size alone resolves incon-
sistencies [150]. This growing awareness has led to discussions
about the necessity of reporting a range of possible outcomes when
evaluating LLMs, rather than relying on a single prompt formula-
tion [99, 150]. In response, various methods for automatic prompt
optimization have been proposed, leveraging techniques such as
gradient-based tuning and reinforcement learning to refine prompt
effectiveness [31, 55, 121]. In parallel, research in IR has examined
variations in how users formulate queries and how retrieval models
interpret instructions [13, 172]. Evaluation in IR has also advocated
for measuring systems across query variations for the same infor-
mation need [13, 119, 126, 181], akin to recent calls for evaluating
LLMs across variations of a prompt.

3.3 Technological Barriers
IR has always been a research area where academics struggled as
compared to industry in terms of access to computational resources.
In the early days of the Web, it was not imaginable for academic
researchers to be able to crawl and index Web-scale datasets. In
AI something similar is happening today: academic researchers
are often unable to access the scale of hardware and training data
required to pre-train large AI models, while well-funded companies
often can.

3.4 Ethical, Societal, Legal, Economical Issues
3.4.1 Ethics, social accountability, responsible AI. While there is
lots of reflection and pointing out of issues around ethics, account-
ability and responsibility in both AI and IR, the fields also have
clear similarities in that the key players are just doing what they
want and racing ahead regardless. The two fields face similar chal-
lenges related to the complexity of regulating technology around
information. For example it is not clear – and not easy to decide
– who is accountable when Google, ChatGPT, or conversational
agents give wrong, harmful, or dangerous answers [17]. Recent
work by Mitra et al. [98] adopt the Consequences-Mechanisms-
Risks (CMR) framework – originally proposed by Gausen et al. [49]
to support designers and practitioners of AI – to characterize the
socio-technical implications of GenAI in the context of information
access and retrieval.

3.4.2 Privacy and copyright issues. When it became clear in the
IR community that sizeable query logs are a vital ingredient to
advances, the academic community looked towards companies to
release their query logs for research purposes. The first (and last)
large-scale raw query log data release was by AOL in 2006. Three
months’ worth of users’ query logs were made public and quickly
removed again as they were found to contain a whole host of pri-
vate user data [16]. Subsequent releases of industrial query logs
remained few and were either completely anonymized (numeric
features instead of raw text) or heavily cleaned and sanitized to
avoid the publication of any private data. We observe a similar
trend when it comes to the release (or better the lack thereof) of
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industrial pre-training data for state-of-the-art LLMs. Technical re-
ports [40, 160] disclose very little of the pre-training regime beyond
general data cleaning principles and a high-level overview of the
content distribution; some evidence [154] suggests that copyrighted
materials are being used during pre-training, and privacy attacks
on LLMs [34] have been shown to be at least somewhat effective
to recover an LLM’s training data. Moreover, both the IR and AI
communities have raised ethical concerns about uncontrolled data
use, leaving many open questions about how data owners can pre-
vent (or detect) misuse of their data. It should also be noted that in
AI efforts are underway to release pre-training corpora (e.g., the
Common Corpus [2]) that are in line with established norms and
values.

3.4.3 Follow the money. The rise of commercial search engines
showed the power of user-based collaborative filtering over tradi-
tional content-based approaches, sparking concerns in the IR com-
munity. Many feared that academic researchwould become obsolete
without access to large-scale query logs, that top students would
leave for high-paying industry jobs, or that funding would disap-
pear. Yet, IR not only survived, but thrived. Researchers reevaluated
the strengths of academia and industry, identifying complemen-
tary roles. Academia remained essential for long-term, high-risk
research and exploration beyond commercial priorities. The diver-
sity of university labs fostered novel ideas, many of which industry
later adopted, strengthening technology transfer and ensuring aca-
demic relevance. This technology transfer highlights the mutual
benefits of industry-academia collaboration. Large-scale, real-world
search problems provided academics with intellectually stimulat-
ing challenges driven by practical needs. This synergy fostered
collaboration through internships, student competitions, faculty en-
gagements (e.g., industry grants, sabbaticals, hybrid roles), and joint
research initiatives. When feasible, industry data and API access
allowed academics to push the boundaries of industry resources,
testing their limits, risks, and capabilities beyond what industry
alone could achieve.

The situation in AI is not different. AI investment has experi-
enced substantial growth, particularly in the GenAI sector. In 2023,
the sector attracted $25.2 billion, nearly nine times the investment
of 2022 and about 30 times the amount from 2019 [81]. In 2021,
global private investment in AI totaled around $93.5 billion, more
than double the total private investment in 2020 [81]. AI salaries
have been on the rise due to high demand and the scarcity of skilled
professionals. In 2022, there was more than a 10% increase in wages
for AI professionals, with managers seeing the highest levels of
increase [5]. There has been a notable increase in the availability of
grants for AI research and development. Governments, private orga-
nizations, and academic institutions have recognized the potential
of AI and are investing heavily in its advancement.

These trends and the delicate balances of money and opportu-
nities, jobs and career, and industry and academia have taught us
that we cannot take anything for granted. It is also important to
realize that for highly visible, practical, and omnipresent areas such
as AI and IR, these things, especially industry and academia, are
strongly intertwined (see Section 5).

3.4.4 Open vs. Closed. Since the rise of the Web, IR research has
seen the growth of proprietary, closed-source systems as well as a

parallel ecosystem of open-source implementations and transparent
algorithms. Notably, a lot of systems originally built at internet
companies like Google, Twitter, and LinkedIn have been published
and/or released open source (e.g., BigTable [27] and Map/Reduce
[35]), with such companies being the the first to encounter the
challenges around having to manage large amounts of data and
data streams. Similarly, in the current AI world we are observing
both open and closed approaches where some models are only
accessible via an API, while others are released for users to run
locally. However, it is still typically not transparent which data
has been used for pre-training, except for a few notable examples
(e.g., OLMO [53]). The IR experience has shown how industry has
selectively released tools and systems with the intent to trigger
the academic research and open-source developer communities to
focus their work on certain problems and systems. The modern
AI industry may learn what the benefits of being more open and
transparent are (e.g., the popular use of Meta’s LLamamodels, given
their availability). There is a clear need for new information access
system architectures [109] and the key IR and AI industry actors
have the opportunity to publish their work to feed the academic
research community with new problems and challenges to study, to
then benefit from the satellite research resulting from their releases
and disclosures.

Research studies in IR also needed to focus on understanding
the behavior of closed, commercial search systems (see Section
3.1.3). Similarly, there is a current shifting in AI to cognitive science
methods as observers of a closed system [52], aiming to understand
how a system works internally by observing its external behavior.

3.4.5 Adversarial attacks. Production IR systems have long been
subjected to adversarial attacks. The most common attack to an
IR system is black-hat Search Engine Optimization (SEO), which
consists in the use of unethical, often deceptive techniques designed
to manipulate search engine rankings – either to artificially boost
a site’s own ranking or to harm a competitor’s website. These
tactics include practices like creating spammy backlinks, inserting
hidden keywords, plagiarizing content, or using automated bots to
generate fake traffic or content. The IR community has responded
to challenges posed by adversarial attacks to IR systems by fostering
research on attack and defense methodologies [26], which resulted
in the Adversarial IR (AIRWeb) workshop series ran between 2005
and 2009 and the subsequent Joint WICOW/AIRWeb Workshop on
Web Quality (WebQuality) initiative than ran until 2015.

GenAI systems, including LLMs, are increasingly becoming the
target of adversarial attacks [63, 106, 114, 122, 149]. Drawing a
parallel between attacks on search engines and attacks on GenAI
systems reveals similar underlying goals and tactics, even though
the specific mechanisms differ due to the nature of each technology.
Historically, attacks on IR systems focused on keyword stuffing
(spamming indexes with low-quality content) and link manipu-
lation to distort rankings. In contrast, attacks on GenAI systems
primarily involve data poisoning (injecting misleading training
data) and prompt manipulation (tricking models into generating
disallowed content). Both exploit manipulated inputs (webpages in
IR vs. training data/prompts in GenAI) to degrade system reliabil-
ity. Other IR attacks, such as cloaking (showing different content
to crawlers and users) and sneaky redirects, parallel LLM-specific
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threats like model evasion/jailbreaking (bypassing content filters)
and adversarial examples (crafting inputs to exploit vulnerabilities).

3.5 Philosophical and Conceptual Issues
3.5.1 Reality is messy. Another similarity can be found when ana-
lyzing how in both fields, until now, applying clear-cut approaches
has only led us so far, and further progress was made after adopt-
ing more fuzzy and uncertain methods. In IR, the move from the
Boolean model to vector space, probabilistic, latent ones provided a
significant increase in effectiveness (Section 2.2). In AI, the classical
symbolic approaches of the GOFAI, based on search, knowledge rep-
resentation, and logical inference, might be adequate for domains
that are simple to define like games, theorem proving, artificial
language definitions, but they fail to scale up when the complexity
of more human and natural worlds enters the scene, in which case
subsymbolic approaches dominate the scene today. For example,
human language has been mastered not by better grammars but
by “playing the game of guessing the next word on huge datasets
for an enormous number of times”. And indeed in AI today much
discussion is happening on hybrid solutions that aim to combine
symbolic and subsymbolic approaches.

3.5.2 Terminology. Terminology has been and is an important
concept in IR. Not only in the sense that a user has to select the
right query terms, but also because the field is dealing with some
crucial concepts that are complex and difficult to define. The usage
of ambiguous or polysemous terms having multiple meanings or
of synonym terms for the same underlying concept can subtract
clarity to the research endeavor. For example, “information” is
such a term with multiple meanings [11, 50]. Another concrete
example is relevance, and in IRwe indeedmade some progress when
we understood that different types of relevance were previously
referred to with one term [100, 101, 147].

The situation is similar and terminology is a critical issue, maybe
to an even greater extent, in AI; this is perhaps not surprising given
the nature of the concepts studied which are at least of the same
complexity level (e.g., intelligence vs. information, or commons
sense knowledge vs. relevance). McDermott [86], already in 1976,
warned AI researchers about the risks of “Wishful mnemonics”:
simply using human like terms like “think”, “understand”, or “goal”,
either as variable/function names in code, or as a description of an
AI program, does not mean that the program is really thinking or
understanding or having a goal in human-like terms. The discussion
is still ongoing today: Mitchell [94] extends the issue to practices
in the AI field when using terms like “learning”, “neural”, etc., and
Floridi and Nobre [45] highlight the risks of conceptual borrowing,
i.e., anthropomorphizing machines and computerizing minds. On a
more concrete level, the term “prompt” is ambiguous as it might
refer to instructions only, or it might include user task specifications,
or context and evidence.

4 Differences
Although there are many similarities between IR and AI, there are
also important differences that we now turn to analyze (see also
Appendix A, Table 2).

4.1 Evaluation and Benchmarks
4.1.1 Attention to evaluation metrics. In Section 3.1.1 we consid-
ered similarities between IR and AI concerning benchmark-based
evaluation and metrics. However, there are also some differences.
It can be argued that, on the one side, the evaluation process in
IR is more meticulous and precise. For example, test collection are
designed on the basis of a specific task with the user in mind, each
metric has a user model, statistical significance is a must. On the
other hand, the amount of data involved is often higher in AI. For
example, the number of test cases (there are more questions in AI
benchmarks – thousands – than topics in TREC – 50), the number of
datasets used (e.g., BEIR [162] or MTEB [108]), etc., are often higher.
The causes for these differences might be the longer evaluation tra-
dition in IR, the size of the fields (discussed below in Section 4.3.1),
and maybe the pace of development (see Section 4.1.3). Whatever
the cause, these differences can be useful to inform he evaluation
practices in the two fields, and to avoid pitfalls (e.g., comparing
results based on average scores of whichever metric is currently
popular, and moreover without statistical significance being estab-
lished; or simply aiming to achieve the highest number on some
leaderboard without consideration of what particular scenario the
testbed was created to represent).

4.1.2 Data contamination in benchmarks. An issue that is particu-
lar to the AI domain, and did not exist for “traditional” IR, is the
possibility of data contamination in benchmarks [128, 138]: LLMs
are typically trained on vast quantities of data, the details of which
are unknown (with a few exceptions such as open source models
like Olmo [53] and Tulu [74]). The reliable deployment of tradi-
tional technical safeguards (such as hiding test sets, having a second
hidden test set, only allowing evaluation against a test set every so
often, specific markers in the data) is difficult.

4.1.3 Validity of benchmarks over time. Test collections created
through collaborative fora such as TREC have been a standard
for evaluating IR systems for decades. However, the landscape of
AI benchmarking has changed significantly in recent times: when
a new AI benchmark is introduced today, industry laboratories
quickly adopt it, often within days, to demonstrate the capabilities
of their models. Within weeks or months, these benchmarks are
frequently “solved”, creating a rapidly shifting evaluation environ-
ment. This accelerated cycle fundamentally alters the incentives
for benchmarking, as the focus shifts from long-term, rigorous
evaluation to short-term competitive performance.

4.2 The Importance of Human Factors
IR is distinguished by being an academic discipline that builds tools
for people, and the field of study is understood as being wider than
the study and construction of a system. “Real world” tasks [152],
context [134], interactions [135, 173], and experiences [87, 145]
all matter and studies of these are all important to the field. Ex-
amples of using a contextual understanding for enhancing user
experience include presenting mobile search results based on user
location, incorporating user feedback through clicks and dwell time
in ranking, and personalizing recommendations over time based
on capturing user’s implicit preferences. Over the decades, such
amalgamation of human-focused studies and system building has
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Table 1: Comparison of the size of AI and IR fields.

Year Number of SIGIR IJCAI NeurIPS ICLR

2024 Submissions 791 5,651 15,671 7,304
Participants 957 2,841 19,756 6,533

2023 Submissions 822 4,566 12,343 4,956
Participants 924 1,988 16,382 3,758

2022 Submissions 793 4,535 10,411 3,328
Participants 1,024 2,014 15,390 5,346

resulted in some of the most significant advancements in informa-
tional systems, including search engines, large-scale recommender
systems, and information access through mobile and multimodal
devices. There are often two sides of the IR coin that compete and
cooperate at the same time. Notably, although there is a rough
divide between a “system” and a “user” focus, it is typical in the IR
community for the same people to evaluate lower-level properties
(e.g., ranking effectiveness) and user experience (e.g., satisfaction).
Even when evaluating document ranking, which often operates at
a level removed from the human-computer interface, the conven-
tional metrics are either based on explicit user models [28] or have
had these models extracted after the fact [104]. It can be argued
that such an attention to human factors and the user-system whole
is missing in AI, where the user has been almost absent up to now
(mostly being looked at by HCI more than AI researchers); however
the phenomenon of prompt-based interaction might change that.

4.3 Community
4.3.1 Size of the field. The fields of AI and IR differ notably in
their community sizes, as shown in Table 1. Major AI conferences,
such as the International Joint Conference on Artificial Intelligence
(IJCAI), the Conference on Neural Information Processing Systems
(NeurIPS), and the International Conference on Learning Represen-
tations (ICLR), attract thousands of paper submissions and atten-
dees annually. In contrast, the SIGIR conference, a leading event in
the IR community, typically receives fewer submissions and has a
more modest attendance, with approximately a thousand partici-
pants each year. This disparity reflects the broader scope and rapid
expansion of the field of AI and their communities [118] compared
to the more specialized focus of IR.

4.3.2 Conflictuality. When comparing personal relations among
researchers within the two fields it can be argued that AI today
exhibits a higher conflictuality than IR in the 1990s. The evidence
can be anecdotal only, but confirmation could be found for example
by reading Marcus’s blog [82] (where, analyzing the headings of
the posts from January 2025, one can find terms as “terrifying”,
“demonized”, “shambles”, “shame”, “bullsh*t”, “f*ck it”), or following
the debate on the consciousness of AI systems [41], that leads to
disagreement also among top-level researchers like Hinton [75],
Sutskever [157], and Bengio [23]. Even the paternity of the results
that led to the recent Nobel prize award is questioned [148].

Such intense and often harsh debates were uncommon in IR
during the 1990s, or at least not widely remembered by researchers
from that time. Several factors may explain this difference. One
possibility is that IR researchers were naturally less prone to strong

disagreements. Another is the nature of the topics: discussions
around intelligence, consciousness, and AGI in AI inherently invite
bold claims and strong opinions, as seen since Dartmouth 1956
[93]. The potential risks associated with AI may also contribute to
heightened tensions [112]. Additionally, the sheer size of the AI
field makes disputes more likely, whereas IR’s division between
user- and system-oriented research did not lead to such conflicts.
More broadly, societal discourse has become more contentious over
time, and even within IR today, conflictuality has increased, with
heated debates emerging, such as between Sakai [140] and Fuhr
[47] about guidelines for IR evaluation or between Ferrante et al.
[42, 43] and Moffat [103] about interval scales in offline evaluation
metrics. However, this conflictuality seems based more on scientific
disagreement than on more personal aspects.

4.3.3 Publication practices. One difference between the IR and AI
communities lies in their publication practices. Traditionally, IR
has followed a structured conference and journal-based publica-
tion model, emphasizing rigorous peer review and reproducibility
[56, 169]. AI, particularly in the era of deep learning and LLMs,
has increasingly shifted towards a preprint-dominated ecosystem,
with arXiv becoming the primary venue for disseminating research
[84, 107]. Furthermore, interesting discussions are happening not
even on these non-peer reviewed but somehow “scientific” forums,
but on blogs by prominent AI researchers (e.g., Mitchell [92] or
Marcus [82]) or on social media. This shift presents both advan-
tages and challenges. On the positive side, the open-access nature
of arXiv has democratized access to the latest research, allowing
researchers to receive early feedback and refine their work before
formal peer review. However, papers can gain significant exposure
in the community even before undergoing peer-assessment. For ex-
ample, the BERT paper [38] was uploaded to arXiv in October 2018
and had already accumulated numerous citations by the time it was
officially presented at NAACL-HLT in June 2019. While this rapid
dissemination can be beneficial, it also carries risks: the absence of
formal peer review may lead to the unchecked spread of unverified
claims, misleading results, and overhyped findings, particularly in
a fast-moving field like AI [37, 177].

4.3.4 Focused vs. “Inclusive” community. The IR community has
historically closely guarded the topics published in its conferences.
This has limited the speed of growth of the community when consid-
ering the number of submissions or participants, likely impacting
sponsorship investments from companies, which are often driven
by recruitment strategies. On the other hand, AI conferences such
as NeurIPS have been more inclusive of related fields, ideas, and
methods; for example, IR papers are routinely accepted [70, 159].

4.4 Increased Attention to Values
4.4.1 Bias and value alignment. In recent years, the integration
of ethical principles into the design and deployment of both IR
and AI systems has gained unprecedented prominence. This shift
marks a departure from earlier eras – particularly the 1990s – when
considerations such as bias, fairness, and value alignment were not
as prioritized or understood.

Modern AI research increasingly emphasizes the mitigation of
biases, the promotion of fairness, and the alignment of systems with
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societal values [64, 132]. Unlike the earlier focus on performance
metrics alone, contemporary studies recognize that even subtle bi-
ases can propagate significant inequities when models are deployed
at scale. This evolution reflects a growing consensus that the ethical
dimensions of AI are as critical to its success as its technical efficacy.

While earlier IR systems exhibited certain biases, (e.g., prefer-
ences related to document length or hyperlink structures), these
were generally more straightforward to identify and address. Re-
cent investigations, however, have revealed that the biases present
in contemporary AI systems are considerably more intricate, e.g.,
models can inherit and amplify subtle forms of bias, and require
more sophisticated detection and mitigation techniques [36].

4.4.2 Explainability and interpretability. The rise of complex, data-
driven models has introduced new challenges related to their inher-
ent opacity. Explainability and interpretability – concepts that were
not central concerns in the past – have become vital for ensuring
accountability in AI systems [10]. As modern models often function
as “black boxes," there is a pressing need for methodologies that
can elucidate their internal decision-making processes. This drive
for transparency not only aids in debugging and improving model
performance but also reinforces public trust in AI applications.

4.4.3 Copyright and data ownership. The current discourse in AI
also reflects a heightened awareness of data governance issues,
including copyright and data ownership [69]. Although compre-
hensive solutions remain elusive, the level of scrutiny and debate
around these topics has increased significantly compared to the
1990s. Researchers now advocate for robust frameworks that ad-
dress the ethical and legal dimensions of data use, ensuring that
AI systems are developed and maintained with a clear respect for
intellectual property and individual rights.

4.4.4 Green AI. A growing contingent within the AI community
cautions against an uncritical “build and they will come” approach
[156]. The substantial energy and environmental costs associated
with training and deploying large-scale models compel a more
deliberate allocation of resources. This perspective argues for pri-
oritizing research that not only pushes technical boundaries but
also addresses pressing societal challenges. The call for responsible
innovation underscores the importance of critically evaluating the
broader impacts on the environment and society at large.

5 Recommendations
We can outline seven recommendations derived from lessons – some
still to be fully realized – learned by the IR community (Figure 1).
This presents a starting point to foster a discussion among the
IR community to better understand our achievements and missed
opportunities, that could be valuable to researchers in AI to build
on them while avoiding similar missteps.

R1. Reflect on benchmarks and metrics. The comprehensive body
of knowledge on effectiveness metrics for IR, including the study
of formal properties of metrics grounded in abstract representa-
tions of user behavior (i.e., user models) [8, 24, 105]), has played
a crucial role in advancing more robust evaluation frameworks in
other fields, such as RecSys [18, 113, 136, 137]. We believe there is
significant potential to apply this paradigm to formally characterize

R1. Reflect on benchmarks and metrics

R2. The system is more than the algorithm

R3. Keep teaching the history of the field

R4. Funding of fundamental research is crucial

R5. Academic research can continue to thrive alongside industry

R6. Do not underestimate the importance of terminology

R7. Lower conflictuality

Figure 1: Recommendations from the lessons learned in IR.

the evaluation of GenAI. Furthermore, making the processes and
artifacts involved in the creation of publicly available benchmarks –
or even embracing the coopetition model [167] and encouraging the
development of reusable resources through community-driven ef-
forts such as the evaluation campaigns at TREC, NTCIR, CLEF, FIRE,
or SemEval – could accelerate research progress and create new
research opportunities. Since benchmarks can present limitations, it
is important to continue the discussion on them, as is already done
to some extent [15, 91, 127]. The methods and techniques that have
been developed in IR [22, 25, 54, 130, 139, 146, 146, 168, 170, 180]
can be usefully applied.

R2. The system is more than the algorithm. IR is unusual in being
an academic discipline that builds tools for people (at least to a
first approximation), but this emphasis on running code is a double-
edged sword: lots of ideas have looked good on paper, but have
never seen application. In many cases there was no incentive for
organizations (industry or academic) to adopt the work; in other
cases it turned out not to make a compelling difference to the end
product (e.g., to the effectiveness of a full-blown search engine). In
the current landscape of AI, there is a tendency to prioritize what
technology can achieve next, often at the expense of addressing the
actual needs experienced by individuals, communities, and cultures.
The lessons here are simple. A balanced approach that integrates
technological advancements with a deep understanding of user
requirements is essential for meaningful and impactful progress.
Even when working on one small slice it is important to understand
the end-to-end system, human andmachine – for example, that may
tell us that a novel interface is a better investment than a marginal
improvement in a ranker (or vice versa). We need to understand the
final users and uses, so we are addressing problems that matter now
or in the foreseeable future. We also need to understand the social
and organizational setting where our research might be applied.

For example, as we push for AGI and agentic work, it becomes
even more important to understand how humans should, could,
and would work with these agents and other AI tools as assistants,
collaborators, and mentors. To provide another concrete example
on a specific topic, when studying the effect of different prompts,
insights from IR on handling query ambiguity and variation could
contribute to more effective design and development of LLMs.

R3. Keep teaching the history of the field. It is important to ground
the recent trends in the field in their historical context. Teaching
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the history of the field is not merely an academic exercise, but it
provides essential insights into how foundational ideas evolved
(e.g., from Boolean retrieval to vector space models to neural IR),
why certain methodologies became dominant (e.g., the Cranfield
paradigm), and how past limitations continue to shape current re-
search directions. Similarly, in AI, the trend has been from search,
problem solving, knowledge representation, expert systems, and
logic, through uncertainty and probability, until (deep) neural net-
works, LLMs, and GenAI. Although GOFAI has failed in reaching
human level intelligence, its methods and techniques are often still
used in modern AI systems (e.g., AlphaGo Zero exploits Monte
Carlo Tree Search [155]). Explicitly addressing the value of the
historical aspects (as some researchers are already doing, e.g., [62])
helps students see that today’s innovations are part of a continuum,
fostering deeper engagement and critical thinking about the field’s
future. To provide a concrete example, ongoing work to optimize
RAG systems can potentially benefit greatly from awareness of the
great body of work on questions answering.

R4. Funding of fundamental research is crucial. In addition to in-
vestment in research infrastructure, and open-source software [6],
we advocate for sustained funding in basic and fundamental re-
search across AI, GenAI, NLP, and LLMs. Public funding has con-
tributed substantially to the advancements in the IR field. Beyond
supporting individual and collaborative research projects, initia-
tives such as TREC or NTCIR, directly funded by NIST (US) and NII
(Japan), and even CLEF (indirectly funded by the EU in Europe: EU
projects allowed its creation), have enabled researchers to explore
new research challenges, including emerging search scenarios and
domain-specific applications, novel retrieval models, reusable test
collections, and novel evaluation metrics.

R5. Academic research can continue to thrive alongside industry. It is
often lamented by AI researchers in academia that only those in the
industry have the ability to make a real impact and advancements,
much like IR students and scholars in academic settings often feared
that all the good IR problems were being addressed by the industry.
There are two major problems with this thinking.

First, just as search is not a solved problem since we have Google,
industry does not have an exclusive right or hold on AI just because
it can afford to have a hefty investment and can attract strong
researchers. Several significant issues remain unsolved and are
better suited for academia, like the study of aspects related to the
users (Section 5) or LLMs’ ability for reasoning, which is of utmost
importance for the future of agentic AI. These investigations are not
at the mercy of computational resources or massive investments.

Second, we need to think about what happens if all the brightest
minds get sucked into industry – who is going to educate the next
generation, and advocate for public policies? We strongly believe
that just as search is not a solved problem, AI is not advanced by
only a handful of for-profit companies. In fact, for the sustainable
and healthy advancement of AI, it is crucial that we maintain a
robust education program tied to academic institutions that free the
scholars from exclusively focusing on applied science or contextual-
izing their research only in commercially beneficial endeavors. We
need every generation to have a group of students, scholars, and
investigators who keep asking tough questions without for-profit

agendas. Without this, we risk getting too narrow and blindsided
for the future of AI advancement.

R6. Do not underestimate the importance of terminology. We have
seen in Section 3.5.2 as both IR and AI have issues with terminology
and how working on it led to progress in IR. One advice that can
be derived from this is to work and study the terminology of the
field in AI as well. This is already somehow acknowledged by AI
researches, e.g., by Mitchell who states “It’s clear that to make and
assess progress in AI more effectively, we will need to develop a
better vocabulary for talking about what machines can do” [94,
p. 8]. Progress could be made by distinguishing the various types
of intelligence, knowledge, common sense, etc.

R7. Lower conflictuality. We believe the IR community managed
to maintain a healthy level of scientific rebuttal (see Section 4.3.2).
We acknowledge that this is easy to achieve when the community
is smaller. A research environment with low conflictuality and
respect among members – even when opposite views are present –
is crucial for adapt to changes in the field.

6 Conclusions
We have reflected on the history of the IR field and its community,
and related this to the current ongoing shift in the area of AI with
the rise of foundation models and GenAI.

On the basis of the previous considerations, we can also take
an introspective look at our discipline and community. Despite
the increasing impact of search engines and information access
systems in society, the IR community has struggled to effectively
engage with the broader academic community, policymakers, and
practitioners. We identify four primary factors contributing to this
phenomenon: (i) the name of the field, “information retrieval” does
not intuitively convey the breadth and depth of IR research; (ii) the
high interdisciplinary nature of IR, while enriching our research,
also complicates efforts to clearly define and communicate IR’s
distinct contributions; (iii) the rigorous research methodologies
developed in IR are sometimes a barrier of entry to the field; and
(iv) not enough effort is needed to ensure that the knowledge de-
veloped in the IR field reaches a wider audience (whereas the AI
community seems to be paying more attention to these issues as,
for example, several popular science books on AI have been and
are being published, e.g., [93, 132, 176]).

This paper is a call for action for the IR community at large:
besides the need to spread the messages that will make the contri-
butions of our field more recognized and accepted, we also need to
discuss among ourselves which is the most effective way to do so.
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A AI and IR: Similarities and Differences

Table 2: Similarities (Section 3) and differences (Section 4)
between AI and IR.

Similarities

Benchmark-based
Evaluation

Benchmarks and metrics
Reliability and robustness of bench-
marks
Reproducibility of evaluation results
for non-public models

Queries vs. Prompts Query formulation vs. prompt engi-
neering
Query variation vs. prompt variation

Technological Barriers

Ethical, Societal, Legal,
and Economical Issues

Ethics, social accountability, responsi-
ble AI
Privacy and copyright issues
Follow the money
Open vs. Closed
Adversarial attacks

Philosophical and
Conceptual Issues

Reality is messy
Terminology

Differences

Evaluation and Bench-
marks

Attention to evaluation metrics
Data contamination in benchmarks
Validity of benchmarks over time

The Importance of
Human Factors

Community Size of the field
Conflictuality
Publication practices
Focused vs. “Inclusive” community

Increased Attention to
Values

Bias and value alignment
Explainability and interpretability
Copyright and data ownership
Green AI
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