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ABSTRACT

Modeling annotators and their labels is valuable for ensuring col-
lected data quality. Though many models have been proposed for
binary or categorical labels, prior methods do not generalize to
complex annotations (e.g., open-ended text, multivariate, or struc-
tured responses) without devising new models for each specific
task. To obviate the need for task-specific modeling, we propose
to model distances between labels, rather than the labels them-
selves. Our models are largely agnostic to the distance function; we
leave it to the requesters to specify an appropriate distance func-
tion for their given annotation task. We propose three models of
annotation quality, including a Bayesian hierarchical extension of
multidimensional scaling which can be trained in an unsupervised
or semi-supervised manner. Results show the generality and effec-
tiveness of our models across diverse complex annotation tasks:
sequence labeling, translation, syntactic parsing, and ranking.

1 INTRODUCTION

Annotations (aka labels) provide the basis for supervised learning
and evaluation. Given the importance of annotation, many models
and measures of annotator behavior and labels have been proposed
[1, 8, 22, 42, 53]. The advent of inexpert crowd annotation [54, 55]
has stimulated a surge of further modeling for quality assurance
with inexpert annotators [63]. However, nearly all existing annota-
tion models, traditional or crowd, assume relatively simple labeling
tasks, such as classification or rating.

Not all annotation tasks are so simple. Some tasks involve open-
ended answer spaces (e.g., translation, transcription, extraction)
or structured responses (e.g., annotating ranked lists, linguistic
syntax or co-reference). Lacking general annotation and aggrega-
tion models for such tasks, quality assurance is often pursued in
other ways: 1) defining custom probabilistic models for each task
of interest (e.g., sequence annotation [48] or co-reference [43]); 2)
falling back on a second group of annotators to select, verify, or fix
responses from the first group (i.e., designing a bespoke annotation
workflow) [3]; or 3) measuring worker reliability indirectly, e.g.,
via attention checks [32] or behavior traces [14, 49]. Limitations
of existing approaches helped prompt a 2019 EMNLP workshop
calling for modeling of complex annotations [44].
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We propose an unified approach for modeling complex anno-
tations that generalizes to a wide variety of annotation tasks. To
obviate the need for new probabilistic models for each task, we
model distances between annotations, rather than the annotations
themselves. Our methods are largely agnostic as to distance func-
tion, leaving it to the requester to specify an appropriate distance
function for their annotation task (via a callback function). In gen-
eral, any error metric to compare human annotations or model
predictions vs. gold labels can serve as the distance function. We
can then estimate annotator reliability by the distance from their la-
bels to those of peer annotators or a trusted gold standard. Though
we do not evaluate on binary and categorical labeling tasks, our
approach to modeling label distances generalizes across both simple
and complex labeling tasks.

We describe a method for modeling label distances, Multidimen-
sional Annotation Scaling (MAS), a Bayesian hierarchical extension
of multidimensional scaling. Beyond inferring the best label for each
item, the model also estimates annotator reliability jointly with item
difficulty [59]. In addition, We describe configurations of MAS to
produce two simpler variants: Smallest Average Distance (SAD), a
generalization of majority vote to complex annotations, and Best
Available User (BAU), which selects the annotator with the highest
accuracy on average. Requesters can decide how to balance sim-
plicity vs. effectiveness in selecting which method best suits their
needs [63]. Our evaluation shows the generality and effectiveness of
our distance-based modeling methods across four diverse complex
annotation tasks: multiple sequence labeling [37, 48], translation
[62], syntactic parsing [31], and item ranking.

Contributions. Complex annotation tasks are abundant and im-
portant, yet we are not familiar with any task-independent, general-
purpose aggregation models for such tasks. Instead, quality assur-
ance is typically performed for each distinct task by defining custom
aggregation models or designing bespoke annotation workflows.
By modeling label distances rather than labels, we enable a single,
general annotation and aggregation model to support diverse tasks
involving complex annotations. This model allows both unsuper-
vised and semi-supervised learning. We also propose two simpler
aggregation methods and compare them against baselines in an-
notation aggregation experiments across four diverse datasets. In
addition to conceptual framing and our three proposed methods,
we also share our datasets and source code!. We thus expect to im-
pact practice, to encourage collection of more such data by easing
quality assurance, and to foster related research.

Data and source code: https://github.com/Praznat/annotationmodeling
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2 BACKGROUND

The benefits of annotation modeling [42] are well-known for both
traditional and crowd annotation settings. In this work, we assume
objective tasks in which annotation quality is measurable and items
to annotate may vary in difficulty. More complex annotation tasks
may reveal greater variability in annotator abilities, as well as a
wide range of different but satisfactory annotations for the same
item. As such, complex annotation tasks may benefit more from
modeling than simpler annotation tasks.

As researchers seek to automate ever-more sophisticated tasks,
annotation needed to train and evaluate AI models becomes in-
creasingly complex. Examples include structured linguistic syntax
[31], ranked lists, sequences [37, 48], open-ended answers to math
problems [26], or even drawings [11, 16].

Lacking general annotation and aggregation methods for mod-
eling such complex annotations, quality assurance for complex
annotation remains a bit eclectic today. For example, one can in-
clude insert non-task, attention-checks (ACs) (e.g., “What is the
third word on this page?”). However, such ACs are easily distin-
guished from actual task-questions, making it easy for an annotator
to pass an AC while still performing poorly on the actual task of
interest [32]. Similarly, free text responses below a certain word
count or with bad grammar may be judged as having bad quality
[25, 62]. However, how to assess annotation quality by its content
requires specifying task-specific checks, which are often relatively
ineffective and can significantly reduce the worker pool size [6].

One of the most popular approaches, honeypot questions, evalu-
ates worker responses against pre-defined or known-gold answers.
This approach can be used to estimate the reliability of workers
by how well they score on the honeypot questions. For simple an-
notation tasks, a small label space permits evaluating responses
based on exact match vs. gold labels. As we move toward ordinal
rating tasks, we might instead assess partial-credit, penalizing “near
misses” less than other errors. With complex annotation, the space
of possible labels may be vast and such partial-credit evaluation
becomes essential (e.g., there may be several acceptable ways to
translate a sentence, and many other ways of variable quality).

Task Complexity. Human computation (HCOMP) tasks span a
vast range of complexity, from simple categorization tasks to highly
complex work typically involving team coordination and/or highly
skilled expertise. With simpler tasks, basic task designs and quality
assurance methods suffice, whereas more complex work may re-
quire very different strategies, such as multi-stage workflow design
and task decomposition strategies, especially when empowering
less skilled workers to effectively complete more complex tasks
[39]. A multi-stage design pattern for crowdsourcing might engage
a second-stage crowd to select, verify, or correct responses from
the first-stage [3, 45]. A well-known challenge, however, is that
each new annotation task often requires designing a new, custom
HCOMP workflow. This challenge has provoked much research to
design more general workflows across annotation tasks [23, 24].

In general, it is useful to reduce human labor when effective
automation exists. Our goal in this work is to advance the frontier
of work that can be automated, by enabling general aggregation for
more complex annotation tasks than is possible today. Workflow
design is complementary, for coordinating hybrid human and AI

Braylan and Lease

sub-tasks, and for success on the “last mile” of difficult tasks that
will always exist beyond AT’s current frontier [15].

2.1 Problem Definition & Goal

Label aggregation is the task of inferring the correct label for a
given item from a set of multiple annotations for that item. Typ-
ically this task is operationalized as selecting the best label for
the item from the set of available annotations, although it can
sometimes include label merging as in the averaging of numeric
values [63]. Offline, static aggregation assumes the annotations are
already collected (vs. online, dynamic control of which items to
annotate). Research on the offline task has been especially vibrant
in the HCOMP field, with many models proposed and benchmarked
[19, 51, 63]. Prior work on general-purpose aggregation models has
typically assumed simple annotations in which a small label space
permits evaluating annotator performance based on exact match
vs. gold or peer labels. While this paper continues the tradition of
research into offline methods for selecting a best available label per
item, it expands from prior work away from the assumptions of
simple annotations with a small label space.

Complex label aggregation extends standard label aggrega-
tion to annotation types that could not be easily represented as a
categorical variable or single-dimensional ordinal variable. Such
tasks often involve a very large or infinite answer space, such that
annotators are far less likely to produce identical labels for the
same item. For example, there can be multiple acceptable ways to
translate a sentence (and even more incorrect ways). As such, it
appears that methods for assessing and aggregating complex anno-
tations ought to be flexible enough to model relative label similarity
between labels, beyond simple exact match.

2.2 Aggregation Methods and Models

As noted above, a variety of general-purpose and task-independent
aggregation models exist for simple annotation tasks. We briefly
discuss a few representative approaches.

Majority Voting (MV) is the simplest aggregation approach
and avoids any modeling of workers or task. When most workers
are accurate and have comparable accuracy, it can work quite well,
and its being task-agnostic makes it quite versatile across diverse
annotation tasks. However, as an unweighted voting method, it can
perform poorly when the majority of workers are inaccurate, or
worker accuracies are quite varied but not modeled. It also assumes
a sufficiently small label space such that some workers will produce
the same label, and thus a majority label can be found.

Dawid and Skene [8] proposed the now “classic” approach to
simultaneously inferring worker reliability and label quality. Their
unsupervised method was based on measuring peer agreement
between annotators (i.e., a popularity contest for labels) to infer
worker reliability and label quality. Interestingly, it was one of the
first applications of the EM algorithm [10]. Despite the relative age
and simplicity of this approach, the aforementioned benchmarking
studies [19, 51, 63] showed Dawid-Skene (DS) to be remarkably
robust across datasets.

Both DS and later Snow et al. [54] assume category-based an-
notation, modeling each annotator by a confusion matrix for their
probability of producing a given categorical label given the gold
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categorical label. Firstly, note this approach cannot be directly ap-
plied to non-classification tasks, such as multiple-choice selection
in which there is not a fixed set of categories to model across items.
Secondly, for K categories we must estimate a K X K confusion
matrix, which becomes more problematic for space and sparsity
as K increases [27], such as with complex annotation tasks. Fi-
nally, these approaches assume we can measure peer agreement via
exact-match between labels. As K grows, it is less likely annotators
will produce the same label for a given item, and so exact-match
becomes a harsher 0/1 loss function for testing assessor reliability.

ZenCrowd [9] can be interpreted as a simplified variant of DS
(though it was proposed without reference to DS). Rather than
representing each worker by a confusion matrix, each worker is
instead modeled by a single reliability parameter. Similar unsuper-
vised estimation is performed via EM. This simplified model can be
more widely applied to non-categorical annotation tasks and is less
prone to sparsity. However, as with DS, labels are compared based
on exact-match. ZenCrowd is representative of a larger family of
models having a single parameter for each annotator [63].

2.2.1 Semi-supervised Aggregation Models. The models described
above are all unsupervised in that they can be trained without know-
ing gold annotations for any items. However, it is often the case
that requesters have access to a number of gold annotations, for ex-
ample when using honeypot questions. In these cases, these trusted
annotations can be used to help aggregation models correctly es-
timate parameters through semi-supervised learning. Aggregation
models using known-gold annotations for semi-supervised learning
can achieve accuracy improvements on simple annotation tasks,
especially when there are relatively few unsupervised annotations
per item [17, 56, 58]. Semi-supervised learning is also stipulated
to be essential when annotators overall exhibit low reliability or
systematic bias in their responses [20].

2.2.2  Aggregation Models for Complex Tasks. Probabilistic models
for annotations [42] provide a framework for several useful tools,
including parameter inference, semi-supervised learning, and prob-
abilistic task management. The main benefit of such models is their
versatility. They can learn point-estimate or probabilistic properties
of annotators and items together with inferred truth values. They
do not require participation from experts or honeypot items but
can benefit from semi-supervised learning. They can be used for
decision-theoretic task control and active learning [7, 36].

For complex annotations of different types, formulating new
probabilistic models is certainly doable but non-trivial. Some exam-
ples are a model based on Hidden Markov Models (HMM) that was
developed to aggregate crowd-annotated sequences of text within
documents [37] and a Chinese Restaurant Process (CRP) model for
short free-response answers [26]. HMMs assume time-dependent
data, and the CRP approach works when there are single discrete
correct answers but not when there are continuous spaces of sim-
ilarly correct ones. While it may be theoretically possible to use
these models for semi-supervised learning, there is yet no such
study of semi-supervised learning on complex annotation tasks.

Designing probabilistic models for complex tasks requires famil-
iarity with the task domain. More generally, formulating models re-
quires advanced mathematics and statistics knowledge, so it would
be helpful to the science community if we could provide reusable
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models which can be more easily adopted by task requesters from
diverse backgrounds. A key challenge is formulating the annotation
likelihood conditioned on the unknown true value of the item plus
any additional parameters that influence the error. If annotator la-
bels L and true value estimators L are simple binary, categorical, or
one-dimensional continuous variables, it is straightforward to de-
fine how they relate to each other according to common conditional
probability distributions of the form:

P(LIL, ) 1)

with extra parameters 6 to model effects like annotator reliability.
However, when L and I are more complex, it becomes less obvious
how to treat them in a model. Hidden variables representing com-
plex concepts, such as L, and their relationship to the observable L
can be very difficult to formulate mathematically. For example, if the
annotations are free text responses, the requester would not only
have to decide on a latent representation or embedding space for
sentences, but also figure out how to translate between that latent
space of L and the observable space of text L, which is challenging.

Our goal is to provide a more flexible option for complex tasks:
a general-purpose and task-independent probabilistic model for
aggregating complex annotations.

3 METHODS

Here we describe our approach to modeling complex annotations
without needing to define a task-specific probabilistic model for
each new annotation task. Section 3.1 describes how we transform
complex annotations datasets into distance datasets, allowing a
probabilistic model to operate on simpler, task-agnostic continuous
values. Our primary model, multidimensional annotation scaling
(MAS), is next described in Section 3.2. Next, we introduce two
simpler variant methods in Sections 3.3 and 3.4 which are faster
but not as complete in the features they model.

3.1 From Annotations to Distances

Our key idea to obviate the need for task-specific models is to model
distances between labels, rather than the labels themselves. The
models we propose are agnostic to the distance function; we leave
it to the requester (who defines the annotation task) to specify an
appropriate distance function for the given task. Typically such
distance functions already exist: as long as there is an evaluation
function to quantify error in comparing predicted labels vs. gold
labels, it can used to construct a distance function for our model.
Formally, a distance function should satisfy the following:

Non-negativity: f(x,y) >0

Symmetry: f(x.y) = f(y.x)

Triangle Inequality: f(x,y) < f(x,z) + f(z,y) for any z
In practice, the requester-supplied distance function need not meet
all three of these requirements because its output can often be trans-
formed to satisfy them. In particular, non-negativity can be satisfied
by conversion to quantiles or exponentiation, and symmetry can
be satisfied by adding (or averaging) f(x,y) and f(y, x) [52]. For
example, Jensen-Shannon Divergence [13] is a symmetrized ver-
sion of asymmetric Kullback-Liebler Divergence. We do encourage
using distance functions that satisfy triangle inequality since we
are still investigating the consequences of breaking this rule.
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Annotator Translation
1 Now Hamas and Israel should make peace so
that this bloodshed comes to an end.
2 Hamas and Israel should reconcile so that this
bloodshed comes to an end.
4 Now that the Hamas and Israel should be made
to compromise, so the blood and evil.

Annotator-1 Annotator-2 Annotation Distance

1 2 0.4333
1 4 0.8586
2 4 0.8758

Table 1: Example of input complex annotation dataset (top)
converted to annotation distances (bottom). Section 4.1 de-
scribes the Urdo-to-English translation dataset shown here
and the specific distance function used.

After selecting a distance function f, we induce a distance dataset
D from the set of annotations by computing the distance between all
pairs of labels for each example. Table 1 shows a simple example of
input annotations and output distances. This produces a symmetric
matrices of distances Djyo = f(Lju, Liv) between annotations by
users (annotators) u,v € U for each item i € I. In the extreme
case of all users annotating all items, the total size of this distance
dataset would be ||U]|2||I]|.

3.2 Multidimensional Annotation Scaling

Once a dataset of annotation distances is produced, we use it to
train a distance-based annotation model. Such a model should infer
true values for each item and might also infer helpful parameters
describing user error and item difficulty. Whereas Equation (1)
models annotations, we now instead model annotation distances
with the conditional likelihood P(D|6). This key transformation of
the data allows our methods to work entirely on simple continuous

(b) Different-y annotators

(a) Equal-y annotators

Figure 1: Illustration of an item modeled by multidimen-
sional annotation scaling (MAS). The emoji faces represent
annotator labels, bold lines are observed distances between
annotations, the golden circles are inferred true values, and
dotted lines show the inferred ¢ for each annotation. When
equal user error y (Equation (5)) are learned for all annota-
tors, the inferred true value is the geometric center. When
different y values are learned, the inferred true value is
pulled closer to the more trusted annotators’ labels.
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space, both for observed and inferred variables, rather than on
complex objects. This way, we avoid the main difficulty in designing
probabilistic models for complex annotations.

Our proposed method to model P(D|6) is inspired by Dawid and
Skene [8] and intended to generalize a wide variety of aggregation
models. The idea is to model a K-dimensional representation space
in which the central point is taken as the estimated true item value,
and annotation embeddings are estimated around that central point
at norms regularized by expected user error. Much like word and
sentence embeddings serve useful purposes in NLP [35], the anno-
tation embeddings and other parameters produced by our model
will be useful for our purposes.

In order to compute annotation embeddings, we devise a proba-
bilistic model based on multidimensional scaling [34]. Multidimen-
sional scaling is a method for estimating coordinates x of points
given only a matrix of distances between those points by mini-
mizing an objective function, generally 3 (||x; — x;|| — Dij)z. The
estimated coordinate vectors carry meaning not in their absolute
direction or magnitude, but rather in their position relative to each
other. Multidimensional scaling can be seen as a generalization of
kernel PCA when the kernel function is isotropic [60], and it is
often used for dimensionality reduction and data visualization.

Our model, multidimensional annotation scaling (MAS), is a hi-
erarchical Bayesian probabilistic model with a multidimensional
scaling likelihood function, in which the estimated coordinates
serve as annotation embeddings. Instead of the data populating a
single distance matrix, each item has a separate annotation distance
matrix. Additionally, because each user may annotate several items,
we leverage the full dataset to compute global parameters repre-
senting annotator reliability, which serve as priors for the local
parameters of each item’s multidimensional scaling likelihood.

3.2.1 The MAS Model. We define the MAS model as follows in
Equations (2)-(6) and illustrate the basic premise in Figure 1.

Li=Liy, uj=argmin, g cius @)

MAS
gy = IXiull (3)

For each item i, the model may select the “best” annotation as
the true value estimator L;. This selected annotation is the one
with the smallest inferred error ¢;, out of all annotations made
by users U(i) that worked on item i. Annotations may also be
graded and ranked according to this ¢, which represents the
model’s predicted distance from annotation L;;, to the best possible
annotation. In the MAS model, the origin in the space of embeddings
x is taken to represent the true value for an item, so the norm of
X;iy 1s understood as that annotation’s distance from the truth, or
¢iy. This interpretation differs from standard multidimensional
scaling, where the magnitude of the coordinates need not carry any
meaning. In order to interpret ¢;;, in this way, MAS assumes the
annotation embedding space is isotropic because direction carries
no meaning and unimodal because there is a single optimal point.
While the concept of a single optimal point may seem inappropriate
for some complex annotations tasks, it can be useful to model this
way even for such tasks.

Diyv ~ N(Ixiu = Xivll,0) , Diuw € Ry (4)
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Equation 4 is the generalized multidimensional scaling objective
function expressed as a probabilistic likelihood. Maximizing the
normal likelihood with free scale parameter o minimizes the square
error between observed distances in the data and learned distances
in the embedding space.
Xiy

1%
The annotation embeddings x comprise normalized raw coordi-
nates X as well as scale parameters y representing user error and
0 representing item difficulty. Normalizing the raw coordinates
forces the scale parameters to entirely determine the embeddings’
magnitudes. The model prefers to fit larger values of the scale pa-
rameters when those users and items are associated with larger
distances in the data. When many annotations have small distances
between each other, the model favors placing them closer to the
origin compared to isolated annotations with higher distances from
the others, thereby rewarding consensus. The model also favors
placing annotations made by smaller-y users closer to the center,
thereby rewarding annotator reliability.

logy, ~ N(log7,®), log8; ~ N(log$,¥) (6)

Xiu = Yui s Yu0i € Ry, Xy, Xiy € RK (5)

The parameters y and § are given hierarchical Bayesian priors
with global location parameters 7 and & and with configurable
scales ® and ¥, respectively, which are set to 1 by default. The
use of hierarchical Bayesian modeling reduces arbitrary choices
of hyperparameters by allowing global parameters to be learned
empirically, and it has been adopted in much of the recent work in
label aggregation [4, 27, 47]. The only free hyperparameter left is
the dimensionality K of the embedding space. We arbitrarily set
K = 8 (untuned), slightly more than a typical five annotations per
item. On simulated development data, varying the value of K did
not have a major effect on results as long as K > 2.

3.2.2  Parameter estimation. We estimate MAS by maximizing the
joint probability of Equations (4)-(6). We specify the model in the
Stan probabilistic programming language [5]. Stan supports max-
imum a posteriori (MAP) estimation, variational inference (VI),
and Markov chain Monte Carlo (MCMC). Our experiments run the
fastest method, MAP, using Stan’s default default L-BFGS optimiza-
tion, until convergence or a maximum of 1500 iterations.

Free variables x, y, &, y, and § are initialized randomly accord-
ing to Stan’s default settings, except for y parameters, which are
set to the average annotation distance of each user (i.e., the BAU
score from Section 3.4 below). Because L-BFGS performs local opti-
mization, it is helpful to initialize parameters with informed prior
estimates when possible. In this case, BAU scores provide easy
initial estimates for y parameters. While § parameters could be
initialized to item-average distance, one depends on the other, so
we use default estimates for § parameters, as stated above.

3.2.3 Semi-supervised learning. Section 2.2.1 discussed the value
of utilizing any available gold labels for semi-supervised estimation
of an aggregation model. This is expected to be broadly useful in
cases where peer-agreement alone cannot be replied upon as a
dependable measure of annotator quality.

To achieve semi-supervised learning with MAS, we assign any
gold labels in training the same user index u = G. We add these gold
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labels to the input annoation dataset and induce distances between
annotations as usual. Next, during training a very informative prior
is applied on the gold annotator’s error parameter ys to impose
a soft constraint on the model to recognize these annotations as
near-optimal. Rather than setting the value of y; to a fixed small
number, it is defined to be very small relative to the distribution of
other users’ y values. In particular, we define

logyg = logy — 4@ 7)
with the effect that users who tend to make annotations similar
to known gold are placed near the origin in the embedding space,
thereby reducing y for those annotators.

3.3 Smallest Average Distance (SAD)

One simple variant of MAS, Smallest Average Distance (SAD), can be
interpreted as a generalization of majority voting for complex anno-
tations, operating entirely locally to each individual item. SAD as-
signs a score ¢;y, to each annotation for item i by annotator u € U(i),
equal to that annotation’s average distance to all other annotations
for the same item i. More formally, we calculate ¢;,, as follows:

El‘s,?D: mzsiu s Siu = {Diuv|v € U,v # u} (8)
where S;,, denotes the set of all annotation distances for item i be-
tween annotator u and any other annotator v € U(i). SAD predicts
this most central annotation, having the smallest average distance
to all other annotations for item i, to be deemed the best consensus
annotation for that item.

Relation to MAS. SAD is fastest to compute in its local formu-
lation defined above, but MAS can also be configured to replicate
SAD by setting hyper-parameters ¥ = 0, and ® = 1. Setting ¥ = 0
effectively treats all annotators as equal and therefore relies solely
on distances within an item to estimate annotation quality.

Semi-supervised learning. Like majority vote, SAD does not
model or utilize annotator reliability. SAD therefore cannot exploit
semi-supervised learning as MAS can.

3.4 Best Available User (BAU)

Whereas SAD operates entirely local to each item, BAU passes over
the annotation distance dataset to estimate global annotator error
across items. BAU assigns a ¢, score to each annotation according
to the annotator’s estimated error ¢, which is calculated as follows:

1
BAU _ _ — . i
£y T Eu = T E Su » Su={Diyvlie LveU,v+u} (9

This means that labels are scored entirely by their annotator’s
global reliability, regardless of the annotator’s label for the par-
ticular item. BAU thus predicts the best label for each item to be
whichever label came from the best available user (annotator) for
that item. SAD and BAU thus present as contrasting extremes in
exploiting local vs. global information in modeling.

Relation to MAS. Under the configuration of ¥ = 1 and ® = 0,
MAS can approximate BAU if the learned values of y have not
strayed too far from their initialization. In practice, this may be
useful for diagnostics or interpretation of results.

Semi-supervised learning. BAU can benefit from semi-supervised

learning because annotators whose annotations are closer to known
gold will be deemed more reliable.
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[[37, 75], [162, 205], [949, 960], [1153, 1171]]

i) Sequence Annotation

Gl hale € LS gy il 2 Gial
ol iy LS A e Ay oS S
=Lt

This Research has proved the very old saying
wrong that it is good to starve while in fever.

ii) Urdu-English Translation

S

I
| vP |
| | |
NP | NP | ADJP |
I I N P I S D I
PRP VBD DT NN v RB JJ B
| | | | | | | |
It was a mess ’ all right .

iii) Syntactic Parse Tree

[127, 323, 1189, 958, 316, 122, 900, 952, 780, 109]

iv) Ranking of Elements ordered (by their IDs)

Figure 2: Examples of complex annotations used in experi-
ments: i) a list of ranges representing token sequences in a
medical abstract; ii) a translation between two human lan-
guages; iii) a syntactic parse tree; and iv) ranking elements
for an item (ordered by their ID numbers).

4 TASKS & DATASETS

In order to evaluate aggregation models for complex annotations,
we need complex annotation datasets that include: i) multiple anno-
tations per item, ii) associated annotator identifiers for each label,
and iii) gold labels for evaluation. There are few public complex
annotation datasets available that meet all three of the above re-
quirements, for a variety of reasons.

Firstly, annotation was traditionally performed only by trusted
annotators, with quality assurance performed by careful manage-
ment and design of the annotation workflow. While inter-annotator
agreement [1] was often quantified, using reliability models of
trusted annotators has been less common [8, 22]. Secondly, while
the advent of crowdsourcing simple labeling tasks has motivated ag-
gregation modeling [54], complex tasks have lacked task-agnostic
annotation models and been more difficult to crowdsource. A third
issue is that datasets are typically released for public use only af-
ter internal quality assurance has been performed, reducing any
multiple labels per item to single consensus labels. When multiple
labels per item are included, annotator identifiers are often redacted
rather than replaced by identifiers protecting the real identities of
annotators.

Below we describe two real datasets for translation (Section 4.1)
and sequence annotation (Section 4.2) which satisfy all three of the
requirements above. In addition, we also generate synthetic datasets
for two additional tasks, parsing (Section 4.3) and ranking (Section
4.4). Simulated experiments allow stress-testing under controlled
conditions, whereas translations and sequences show empirical
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results on actual annotations. Figure 2 shows illustrative examples
of each task and Table 2 summarizes key properties of each dataset.

4.1 Real Annotations: Translations

This dataset is a collection of Urdu-to-English translations made
by non-professional translators [62]. We use the 293 sentences that
have more than one translation. Gold translations come from profes-
sional translators. The final dataset we use contains 561 translations
by 25 unique workers over these sentences. As seen in Table 2, the
average number of annotations per item in the translation dataset
is less than two. In fact, only a very small minority of the items in
this dataset have more than two annotations available, making this
a relatively challenging dataset to study consensus effects.

4.2 Real Annotations: Sequences

Nye et al. [40] and Nguyen et al. [37] share a dataset of 5,000 medical
paper abstracts describing randomized control trials. Each abstract
is annotated by roughly 5 Amazon Mechanical Turk workers. For
each abstract, workers were asked to mark all text spans which
identify the population enrolled in the clinical trial. Each token
thus has a binary label: inside or outside of a span. They also collect
gold annotations by medical students for a subset of 200 abstracts.

Out of the 200 abstracts with available gold, Nguyen et al. [37]
share outputs from their Crowd-HMM model for 191 of the abstracts.
We thus reduce the dataset used to only these 191 abstracts, with
1165 sequence annotations by 91 unique workers.

4.3 Synthetic Annotations: Parse Trees

Syntactic parsing represents a challenging annotation task which
has traditionally required trained linguists. We selected this task
for several reasons. Syntactic parsing has attracted great attention
in the NLP community, and syntax trees clearly represent complex
annotations. Such a difficult annotation task could reveal varying
abilities with even trusted annotators which might be usefully mod-
eled. Finally, given aggregation modeling support, we can envision
ambitious crowdsourcing task designers pushing the envelope to
engage the crowd in more complex tasks like this.

We focus specifically on constituency parsing, as embodied in the
Penn Treebank (PTB) [31]. Given lack of a known dataset meeting
Section 4’s criteria (i-iii), we generate a synthetic dataset as follows.
We randomly sample sentences of length 10 or more from PTB’s
Brown corpus [12]. We employ a diverse set of automatic parsing
models included in NLTK [28]: the Charniak parser [33], MaltParser
[38], and the Stanford Parser [30]. From each parser we generate a
k-best set of candidate parses per sentence. Next, we evaluate the
quality of each candidate parse vs. PTB’s gold parse by the EVALB
metric [50]. Finally, we merge all model output parses into a single
ranking, ordered by decreasing EVALB score.

We simulate varying annotator accuracy by assigning each an-
notator u € U an overall accuracy parameter g, from a beta dis-
tribution. We define two configurations for setting this parame-
ter. In the “basic” setting, most annotators will be fairly accurate,
sampling V, a;, ~ beta(4, 1). In contrast, the “noisy” configura-
tion assumes low accuracy workers are more prevalent, sampling
Vu ay ~ beta(3, 2). Figures 4a and 4b show histograms for these
two distributions.
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Dataset Type Annotators Items Labels Identical #(%) Labels/User Labels/Item | Section
Translations Real 25 293 561 9(1.6%) 22.4+20.5 1.9+0.5 4.1
Sequences Real 91 191 1165 87 (7.5%) 12.8+18.4 6.1+1.2 4.2
Parses (basic) ~ Synthetic 30 100 600 59 (9.8%) 20 6+2.39 43
Parses (noisy) Synthetic 30 100 600 84 (14%) 20 6+2.25 43
Rankings Synthetic 30 100 600 2(0.3%) 20 6+2.34 44

Table 2: Datasets used and summary statistics. The number of annotators ||U||, number of items ||I||, and number of annotations
|IL|| vary by dataset. The number of identical labels, i.e. those occurring more than once, is typically very small for complex
annotation tasks, but with some variation between datasets. The number of labels per user and labels per item suggests how
much information the model can learn from the data about user and item-level parameters, respectively.

We randomly assign 20% of the sentences to each annotator. For
each sentence i and annotator u, we generate an item-level error
parameter e;, from a Normal distribution e;;, ~ N(0,0.1). The
annotator’s adjusted accuracy for the given sentence will then be
(ay, + ejy). Finally, the simulator “generates” annotator u’s parse for
sentence i by selecting the output model parse having EVALB score s
best matching the adjusted accuracy, i.e., minimizing |s — (ay +€;y)|-

4.4 Synthetic Annotations: Element Rankings

This task involves ranking a set of top elements for each question
(item). For example, users might be asked to name and sort the ten
largest countries by population, the five best-selling fiction books
of 2018 by sales volume, or the three richest politicians in Europe.

We assume 100 such items, each having 50 elements, and respon-
dents needing to identify and rank the top 10 elements for each
item. Our simulator generates a “true score” g for each element e
in an item from a standard normal distribution, and a gold ranking
over elements for each item is induced from these scores.

Top-10 rankings for each worker are simulated by sorting the
top ten elements by the worker’s “perceived score”. The perceived
score is drawn from a normal distribution with location = g, and
scale = 0, 0;. These ¢ parameters simulate worker skill and item
difficulty. To simulate variation over users and items, each oy, is
drawn from a Uniform(0,1) distribution.

5 EXPERIMENTS

Validation vs. testing. Model development was performed en-
tirely on the Rankings task, leading to bug fixes and modeling im-
provements but no parameter tuning. The other three tasks (trans-
lations, sequence annotation, and parsing) were reserved for final
testing of model generalization.

5.1 Methods

5.1.1 General Baselines. We are not aware of any task-independent
models for aggregating complex annotations to compare our models
against. Instead, we compare to a variety of other baselines.

Random User (RU). The simplest baseline is to choose a ran-
dom user’s annotation for each item. This represents the scenario as
if only a single label were collected per item. We report the RU per-
formance as an average over five trials, sampling with replacement
from available labels.

ZenCrowd (ZC) (Section 2.2) models each worker’s probability
of providing correct labels and effectively performs weighted voting.
ZC thus represents an improvement over (unweighted) majority
voting, provided worker accuracy estimates are reasonable.

5.1.2  Sequence task baselines. Token-wise Majority Vote (TMV).
In addition to comparisons against prior work, Nguyen et al. [37]
report a simple baseline which breaks sequence annotations into
individual tokens and then performs a token-wise majority vote.

Crowd-HMM (CHMM). Nguyen et al. [37] proposed a novel
bespoke Crowd-HMM probabilistic model for sequence labeling.
Using the same dataset that we also adopt in this study, they show
empirical improvement of Crowd-HMM over prior work [18, 48].

Note: Nguyen et al. [37] use 4,800 abstracts without gold for un-
supervised training, whereas we limit ourselves to the 191 abstracts
shared by the authors with Crowd-HMM model outputs. Our empir-
ical results thus potentially underestimate the relative performance
of our distance-based models in comparison to Crowd-HMM.

5.1.3  Oracle. Finally, we compare to an upper-bound “Oracle”,
which selects the best annotation per item by cheating, using the
gold to pick the best annotation according to the evaluation metric.

5.2 Evaluation Metrics & Annotation Distances

For each complex annotation task (Section 4), a different evaluation
metric is often warranted. We summarize below the metrics used,
then discuss how each is used to induce a distance function for our
distance-based aggregation models (Section 3).

5.2.1 Evaluation Metrics. We report a single metric for each task,
each measuring annotation quality (larger is better). All of the met-
rics we adopt are defined in the range [0, 1], though any arbitrary
evaluation metric could be used in practice.

Translation. For evaluating worker translations against gold
translations we use the GLEU score [61], which is a variant of the
BLEU [41] score but specialized for comparisons between individual
sentences. We use the NLTK [28]’s implementation.

Sequence Annotation. We adopt the same F1 evaluation metric
reported by Nguyen et al. [37]. They first define textual span-based
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Experiment Baselines Our Work Upperbound
Task Evaluation Metric RU ZC | TMV CHMM | SAD BAU MAS | S-BAU S-MAS Oracle
Translations GLEU 0.185 0.188 - - 0.198 0.216 0.217 | 0.220 0.227 0.246
Sequences F1 0.561 0.569 | 0.652 0.702 0.663 0.669 0.709 | 0.677 0.709 0.827
Parses (basic) EVALB 0.812 0.819 - - 0.850 0.877 0.932 | 0.902 0.933 0.939
Parses (noisy) EVALB 0.705 0.702 - - 0.675 0.640 0.655 | 0.641 0.756 0.830
Rankings Kendall 7 0.491 0.495 - - 0.680 0.697 0.710 | 0.697 0.711 0.724

Table 3: Results of 1-best evaluation. Evaluation metrics vary by task, but larger is better. The best unsupervised result in each
row is bolded. Lesser results whose difference is not statistically significant at the 0.05 level are underlined. Semi-supervised

results S-BAU and S-MAS are similarly bolded or underlined.

precision and recall metrics as follows:

# true positive tokens

(10)

Precision P =
recision # tokens in labeled span

# true positive tokens

Recall R = (11)

# tokens in gold span

They they average these span-based P and R metrics over all spans,
and report F1 as the harmonic mean of these P and R averages.

Parsing. We use EVALB for evaluating annotations against gold.

Ranking. We report Kendall [21]’s 7 correlation to evaluate the
position of elements in annotated ranked lists against their positions
in the gold ranked lists. While the gold list contains an exhaustive
ranking over all elements, the annotation task is only to rank the
top 10 elements. In evaluating annotator rankings, we assume any
element not in the top 10 of an annotator list is considered to be
“tied for last place” and assigned the maximum position.

5.2.2  From Metrics to Distances. As discussed earlier, the models
we propose are agnostic to the distance function. In general, such
distance functions already exist: as long as we can quantify error
in comparing predicted labels vs. gold labels (i.e., an evaluation
metric), the same error measure can used as a convenient distance
function for our model. We adopt this approach in our study and
leave for future work investigation of how alternative distance
functions interact with choice of evaluation metric.

All evaluation metrics we report quantify the annotation quality
g. Since all are conveniently defined over [0, 1], we can induce an
error measure e by simply taking e = 1—gq. In general, non-bounded
metrics would require empirically identifying the maximum score
quality in order to convert from quality to error.

Translation is the only task we consider in which the the evalu-
ation metric (GLEU) violates the symmetry requirement for distance
functions (Section 3.1). As described there, we apply the general ap-
proach of symmetrizing the metric by computing in both directions
and averaging, then proceeding as with other metrics.

f(x,y) = 1-0.5(GLEU(x, y) + GLEU(y, x))

Sequence Annotation. We use f(x,y) = 1 — F1(x, y).
Parsing. The distance function is f(x,y) = 1 — EVALB(x, ).
Ranking. The distance function is f(x,y) = 1 — z(x, y).

(12)

5.3 Evaluation: 1-Best

Canonical 1-best evaluation evaluates how well aggregation models
choose a single best consensus annotation for each item from the

set of available annotations for that item. As with the above Oracle
upper-bound, evaluation assumes a reference gold standard for
each task against which other annotations can be compared. The
evaluation metric for each task is specified along with its corre-
sponding dataset in Section 4. We report mean performance of each
method across the items in each dataset. A two-tailed paired t-test
is also conducted to measure statistical significance of difference in
mean performance across items between methods for each dataset.
Results for 1-best evaluation are shown in Table 3.
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Figure 3: Correlation between MAS model scores for annota-
tions vs. gold scores: actual annotation quality (as measured
by the evaluation metric with reference to the gold annota-
tion). Specifically, we scatterplot (1 - MAS score) versus gold
scores over all annotations in each dataset.
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Real datasets. In the translation task, MAS outperforms other
distance-based models, which themselves outperform RU and ZC.
For the sequence annotation task, all distance-based methods out-
perform TMV, which itself is still much better than RU. MAS is
the best performing distance-based method, remarkably achieving
performance on par with the CHMM probabilistic model specially
designed for this task.

Synthetic datasets. Parse tree and ranking task results show
that our distance-based models (BAU, SAD, and MAS) outperform
baselines under normal conditions, with MAS generally strongest.
The exception is with the “noisy” parsing task, in which low accu-
racy workers are more prevalent. Here is more consensus among
erroneous annotators than among reliable ones, so consensus-based
methods even underperform RU. This situation is a compelling rea-
son for using semi-supervised learning (Section 5.5).

ZenCrowd. Across tasks, ZC performs nearly identically to RU.
The likely culprit for ZC’s lackluster performance is the large label
space of complex annotation (Section 2.1), leading to poor anno-
tator accuracy estimates for weighted voting. With a large label
space, annotators will rarely produce identical labels (see Table
2), and thus any model estimating annotator reliability based on
exact match of labels may struggle to learn meaningful reliability
weights. Our results for ZC are likely indicative of a larger family
of existing, similar annotation models which estimate annotator
reliability based on exact match between labels [63].

5.4 Evaluation: Score-all

Whereas 1-best evaluation above only evaluates an aggregation
model’s ability to select the best annotation, one might want to
identify the top-k annotations to keep, the bottom-k annotations
to discard, or to discard entire items if no annotations of sufficient
quality are given. In short, it can be useful to evaluate how reliably
the model scores all annotations.

To evaluate this, we measure how closely model scores for anno-
tations correlate with actual annotation quality (as measured by the
evaluation metric with reference to the gold annotation). We refer
to the latter as gold scores, and we measure Pearson correlation
between model vs. gold scores over all annotations. This correla-
tion measure serves as a rough estimate of how accurately each
annotation’s distance to gold could be predicted, if the requester
were interested in selecting annotations by threshold rather than
just choosing the best.

Table 4 displays results for distance-based methods. Results are
similar to the 1-best evaluation, with MAS typically performing best.
Figure 3 displays scatterplots between annotation quality predicted
by MAS and actual gold scores for each of the five datasets. These
scatterplots provide a more visual diagnostic than the Pearson
correlations used to summarize performance.

The score-all results demonstrate the relative difficulty of ag-
gregating these different datasets. The basic parses and rankings
simulations are the easiest, with very good fit between predicted
and actual annotation quality. Translations and the noisy parses
are the most difficult, but for different reasons. For noisy parses, the
high degree of user error causes unsupervised consensus estimates
to be of low quality, but this is overcome by introducing a small
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Task | SAD BAU MAS | S-BAU S-MAS
Translations | 0.18 0.20 0.22 0.24 0.38
Sequences | 0.63 0.51 0.65 0.52 0.69
Parses (basic) | 048 0.72 0.83 0.78 0.85
Parses (noisy) | 0.19 -0.64  0.06 -0.63 0.50
Rankings | 0.80 0.83 0.85 0.83 0.86
Table 4: Experimental results of score-all evaluation, mea-
suring Pearson correlation between distance models’ pre-
dicted annotation quality and their gold scores.

amount of supervision. For translations, the problem is likely due
in part to having too few annotations per item.

5.5 Evaluation: Semi-Supervised Learning

Section 5.3’s 1-best results suggest that when low accuracy annota-
tors are more prevalent (i.e., in the “noisy” parsing task), consensus-
based methods perform worse than simply selecting an annotation
at random (RU). This result for complex annotations is consistent
with prior findings for simple annotations (Section 2.2.1): purely
unsupervised aggregation models struggle when peer-agreement
does not provide a reliable measure of label quality.

Section 3.2.3 described how this might be addressed in our
distance-based models by exploiting semi-supervised learning (when
gold annotations are available). To test this approach empirically,
we reserve 10% of items as known-gold and remove them from
testing data. Note that for all experiments (unsupervised and semi-
supervised), these same known-gold items were removed from
the test set to ensure fair comparison of unsupervised vs. semi-
supervised settings for model estimation.

For the most part, semi-supervised results are the same, match-
ing or slightly exceeding unsupervised results. See 1-best results
(Table 3) and score-all results (Table 4). For example, on the transla-
tions task, semi-supervised S-MAS achieves 1-best 0.227 GLEU vs.
unsupervised 0.217. In contrast, semi-supervised estimation yields
drastic S-MAS improvement for the “noisy” parsing case. For 1-best,
the change is from 0.655 to 0.756 1-best EVALB score (15% improve-
ment, statistically significant). For score-all, change is from 0.06
Pearson correlation to 0.50. However, semi-supervised BAU, which
only updates the scores for annotators that worked on known-gold,
performs the same as unsupervised BAU. MAS benefits far more
than BAU by using known-gold to update inferred reliability for
all annotators, through iterative parameter inference.

How MAS uses semi-supervised learning to succeed in the “noisy”
parsing task is depicted in Figure 4. Unsupervised MAS learns user
error y parameters that correlate closely with BAU’s calculated
user average distances, as seen in Figure 4d. In this unsupervised
case both MAS and BAU suffer because their most trusted annota-
tors are actually the most erroneous. When using semi-supervised
learning, however, MAS is able to rearrange its inferences for an-
notator reliability in the reverse direction, as seen in Figure 4f. The
smallest-y point in this scatterplot represents the gold user, and
MAS iteratively shrinks the y of all users whose annotations are
generally small in distance to other small-y users such as the gold
user. The process repeats until even the y values of users who did
not annotate a known-gold item are affected.
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Figure 4: Insights from varying annotator accuracies in the
parsing task. Histograms of simulated user error and scat-
terplots comparing MAS y values per user against average
user distance (BAU’s ¢ score), for the basic and noisy config-
urations. In the semi-supervised cases, inference of the y pa-
rameters by MAS is assisted by the “gold” user represented
by the left-most point in each plot. In the noisy simulator
configuration, this reordering against consensus is what al-
lows semi-supervised MAS to outperform even as other user-
weighted methods underperform against RU.

Ultimately, results show that findings of prior semi-supervised
work for simple labeling tasks [56, 58] seem to carry over to complex
labeling tasks, with our task-agnostic distance-based model able to
similarly exploit and benefit from semi-supervised training.

6 DISCUSSION & CONCLUSION

Training data is the fuel of modern Al As we seek to grow Al
capabilities to accomplish more complex prediction tasks, we will
need quality annotations for those tasks. We can expect more var-
ied performance across annotators as annotation task difficulty
increases, and as diverse crowdsourced annotators are engaged to
tackle ever-more challenging annotation tasks.

We have proposed distance-based aggregation models for com-
plex annotations beyond binary, categorical, or ordinal variables.
Our Multidimensional Annotation Scaling (MAS) method and its
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variants bypass the challenge of having to define task-specific prob-
abilistic models for each new type of complex annotation by instead
modeling annotation distances, which can often be easily induced
from existing evaluation metrics. Consequently, these distance-
based methods can be used with little alteration across a wide
variety of tasks. Results on four types of tasks producing com-
plex annotations — sequence labeling, translation, syntactic parsing,
and ranking - show improvement over general baselines and even
match performance with a task-specific probabilistic model for the
sequence task. MAS thus appears to be useful, both for practical
adoption and as a baseline against which new, bespoke aggregation
models for complex annotations can be benchmarked.

In principle, customized models for specific tasks (e.g., Crowd-
HMM) can certainly perform better than general-purpose alterna-
tives like MAS, but at the cost of greater complexity and additional
time and expertise to design. The question is how much added
benefit a custom model may deliver as return-on-investment vs.
using an off-the-shelf, task-agnostic model such as MAS? It is also
worth framing MAS in the context of two extremes: the cheapest
option — only collecting one annotation per item (i.e., RU) — and
the most expensive option — designing a custom probabilistic an-
notation model or custom human computation workflow for each
new annotation task. In this context, MAS offers an alternative
for automatically aggregating multiple complex annotations with
minimal extra work for the requester.

Many research questions remain regarding effective collection
of complex annotations. One idea for future work is to extend MAS
to support complex tasks without assuming the annotation space
is isotropic and unimodal (Section 3.2.1). This could extend MAS
beyond objective tasks to also support subjective tasks [57], which
permit a space of wider and more uneven valid responses.

Whereas aggregation has been traditionally formulated as select-
ing between available annotator labels for a given item [8], further
gains might be had by merging multiple annotator labels. In order
to merge labels while keeping the model task-agnostic, we might
allow requesters to supply a task-specific merge function, such
as some existing method for merging rankings [2, 46]. The task-
agnostic model could then exploit this task-specific merge function
to potentially achieve superior consensus labels.

Our aggregation model clearly requires having some distance
function, and intuition suggests that “better” distance functions
should yield better performance (e.g., aligning choice of distance
function with the evaluation metric being optimized). It would also
be interesting to investigate interactions between choice of distance
function and MAS likelihood function. We have used normal likeli-
hood (Equation 4), corresponding to square loss, but many other
alternatives could be explored [29]. With transformations of the
data or the likelihood function, when appropriate, the MAS model
should be capable of improvement akin to other regression models.
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