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Abstract

Modeling annotators and their labels is useful for ensuring
data quality. However, while many models have been pro-
posed to handle binary or categorical labels, prior methods do
not generalize to complex annotation tasks (e.g., open-ended
text, multivariate, structured responses) without devising new
models for each specific task. To obviate the need for task-
specific modeling, we propose to model distances between
labels, rather than the labels themselves. Our methods are ag-
nostic as to the distance function; we leave it to the annotation
task requester to specify an appropriate distance function for
their task. We propose three methods, including a Bayesian
hierarchical extension of multidimensional scaling.

1 Motivation
Annotations provide the basis for supervised learning and
evaluation. Given the importance of annotation, much work
has considered models and measures of annotator behav-
ior and labels (Dawid and Skene 1979; Smyth et al. 1995;
Artstein and Poesio 2008; Passonneau and Carpenter 2014).
The advent of inexpert crowd annotation (Snow et al. 2008)
has stimulated a surge of further modeling work motivated
by quality assurance with inexpert annotators. However,
nearly all existing annotation models assume relatively sim-
ple labeling tasks, such as classification or rating.

Not all annotation tasks are so simple. Some tasks involve
open-ended answer spaces (e.g., translation, transcription,
extraction, generation) (Bernstein et al. 2010; Zaidan and
Callison-Burch 2011; Li et al. 2016) or structured responses
(e.g., annotating linguistic syntax or co-reference) (Paun et
al. 2018). As methods for effective crowdsourcing continue
to advance, we are seeing increasingly involved tasks, such
as annotating lists or sequences (Nguyen et al. 2017), open-
ended answers to math problems (Lin, Mausam, and Weld
2012), or even drawings (Ha and Eck 2017). Lacking task-
independent, general-purpose models supporting aggrega-
tion for such tasks, aggregation is usually performed by task-
specific models or by relying on additional human compu-
tation. Our research goal is to provide a general aggregation
model supporting diverse complex annotation tasks.
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We define complex annotations as any kind of annotation
that could not be easily represented as a categorical variable
or single-dimensional ordinal variable. Such tasks often in-
volve a very large or infinite answer space, such that annota-
tors are far less likely produce identical labels for the same
item. For example, there can be multiple acceptable ways to
translate a sentence (and even more incorrect ways). It thus
makes less sense to assume a hard 0/1 loss in assessing anno-
tator labels, but rather varying similarity to each other over
the space of their possible values. Any method for aggregat-
ing complex annotations should be able to handle large and
small dissimilarity as well as exact equality between them.

2 Background
When annotations are simple categorical variables, there is
a rich literature of general-purpose and task-independent
methods for aggregation. The most well-known model is
from Dawid and Skene (1979), who provide an unsuper-
vised or potentially semi-supervised method for inferring
truth from user and item identifiers and labels. This prob-
abilistic model can be trained via expectation maximization
or Bayesian methods (Carpenter 2011). The Dawid-Skene
model learns confusion matrices for each user represent-
ing that user’s probability of giving the observed categor-
ical label given the unknown true value. An alternative is
to learn each user’s probability of providing a correct an-
swer (Demartini, Difallah, and Cudré-Mauroux 2012). Gold
labels are not required, as parameters are learned through
consensus between users. Dawid-Skene can be thought of as
weighted voting, and it tends to outperform simple majority
voting (Sheshadri and Lease 2013).

A common characteristic of aggregation methods for sim-
ple annotations is that they make use of statistical models to
explain the collected data. Statistical models for crowd an-
notations provide a framework for several useful tools, in-
cluding parameter inference, semi-supervised learning, and
probabilistic task management. For tasks that collect com-
plex annotations from the crowd, formulating statistical
models can be very difficult because of the non-categorical
likelihood functions. Designing such models requires both
familiarity with the task domain and skill with mathematics
and statistics. Some examples are a model based on Hid-



den Markov Models (HMM) that was developed to aggre-
gate crowd-annotated sequences of text within documents
(Nguyen et al. 2017) and a Chinese Restaurant Process
(CRP) model for short free-response answers (Lin, Mausam,
and Weld 2012). HMMs can only be used for data with time-
dependence, and the CRP approach works when there are
single discrete correct answers but not when there are con-
tinuous spaces of similarly correct ones. So far, no model has
been proven effective for diverse complex annotation tasks.

3 Proposed Methodology
The key research question is how to provide a general frame-
work for modeling complex crowd annotations without the
need for task-specific statistical models. Our proposed idea
for circumventing the need for task-specific models is to in-
stead depend on task-specific distance functions, which are
easier to reason about and exist in abundance for most of
the tasks we might consider. As long as there exists an eval-
uation metric for comparing predictions to gold, that same
metric could be used as a distance function.

Once a distance function is selected, the next step is to
produce a distance dataset from the original dataset contain-
ing distances Diuv for users u ∈ U and v ∈ U and items
i ∈ I . This step can be done for each item in parallel by us-
ing the distance function to produce a matrix of annotation
distances between all users that have annotated that item.

The distance dataset can be used to train a crowd annota-
tion distance model. This model should infer true values for
each item and might also infer helpful parameters describ-
ing user error and item difficulty. By modeling distances, we
can now define the likelihood for a continuous variable (dis-
tances) rather than for complex objects (annotations). With
both observed and inferred variables now entirely in contin-
uous space, we avoid the main difficulty in designing statis-
tical models for complex annotations.

Smallest Average Distance (SAD) Our first and simplest
method operates local to each item, akin to majority voting.
It selects the annotator label L̂i for each item i with least
average distance to all other labels for it.

Best Available User (BAU) Our second method selects
the best annotation L̂i for each item i by choosing the an-
notation from the most trusted annotator u′

i. Trust of u′
i is

estimated as their average distance over the full dataset.

Multidimensional Annotation Scaling (MAS) Our final
proposed method for modeling crowd annotation distances
is inspired by Dawid-Skene and intended as a generalization
of BAU and SAD that balances the contributions of each.
The idea is to model a K-dimensional representation space
in which the central point is taken as the estimated true item
value, and annotation embeddings are estimated around that
central point at norms regularized by expected user error.

In order to compute such annotation embeddings, we de-
vise a statistical model based on multidimensional scaling.
Multidimensional scaling is a method for estimating coor-
dinates x of points given only a matrix of distances be-
tween those points by minimizing an objective function,

generally
∑

(‖xi − xj‖ − Dij)
2. MAS utilizes the mul-

tidimensional scaling objective function in which the esti-
mated coordinates serve as annotation embeddings. Instead
of the data populating a single distance matrix, separate dis-
tance matrices correspond to each item. Because each user
may annotate several items, the full dataset can be lever-
aged to compute global parameters representing user abil-
ity and serving as priors for the local parameters of each
item’s multidimensional scaling model. The resulting model
is most easily expressed a hierarchical Bayesian model with
a multidimensional scaling likelihood function. We specify
this model in the Stan probabilistic programming language,
which is equipped with algorithms for maximum a posteriori
(MAP) estimation, variational inference (VI), and Markov
chain Monte Carlo (MCMC).

4 Experiments
Our methods seek to support modeling and aggregation for
datasets satisfying three conditions: complex labels, workers
associated with identifiers, and gold labels to evaluate in-
ferences. Several public datasets exist meeting two of those
conditions, but meeting all three is rare. So far, we have con-
ducted preliminary experiments on two real datasets meet-
ing these conditions as well as two synthetic datasets. The
largest real dataset we explore is a collection of 5,000 med-
ical paper abstracts annotated by Amazon Mechanical Turk
workers in (Nguyen et al. 2017). In this Biomedical Infor-
mation Extraction (IE) task, workers annotate text spans de-
scribing populations enrolled in clinical trials. The other real
dataset available to us is a collection of Urdu-to-English
translations made by non-professional translators (Zaidan
and Callison-Burch 2011). Of this set, we can only use the
300 items that have more than one annotation. Additionally,
we develop a simulator for two possible kinds of complex
annotations: syntactic parse trees and ranked lists. Syntactic
parsing is a particularly interesting example for which cor-
pora are challenging to produce even with trained linguists.

Our preliminary experiments compared our proposed
methods against several baselines including selection of a
random user’s annotation (RU) and the use of an oracle
(OR) that selects the performance-maximizing annotations.
For the sequences dataset, we additionally compare against
the proposed method (HMM) and simplest baseline (MV)
from (Nguyen et al. 2017). We do not compare to traditional
aggregation models that require categorical annotations be-
cause the lack of exact matches between complex annota-
tions suggests they would perform comparably to RU.

Table 1 displays the results of the experiments. The evalu-

RU BAU SAD MAS Oracle
Parse Trees 0.879 0.908 0.905 0.929 0.965
Rankings 0.647 0.660 0.679 0.673 0.704
Sequences 0.549 0.660 0.658 0.691 0.824
Translations 0.254 0.259 0.260 0.275 0.302

Table 1: Preliminary experimental results. For sequences,
MV achieves 0.647 and HMM achieves 0.697.



ation measures for the parse trees, rankings, sequences, and
translations experiments are EVALB, Kendall’s tau, F1, and
BLEU, respectively. These also correspond to the distance
functions used for each dataset.

These experiments provide some evidence that multidi-
mensional annotation scaling (MAS) is a powerful gen-
eral technique for aggregating complex labels. In the real
datasets, it outperforms the other general aggregation meth-
ods by a wide margin. One interesting result is that the
weaker methods are barely useful for the translation task,
while MAS performs halfway between random and ora-
cle. Having a powerful method for aggregating translation
data might add substantial value to the collection of multi-
ple translations. As for the simulated datasets, MAS outper-
forms the other methods significantly for the parsing task
and very slightly underperforms SAD for the rankings task.
Its underperformance in the rankings task might be compa-
rable to how majority vote occasionally outperforms Dawid-
Skene in simple tasks. Overall, MAS appears to succeed at
its goal of combining the benefits of BAU and SAD in an
approach that is more dependable and interpretable.

5 Challenges
The greatest challenge we face is finding appropriate data
for our experiments. While there are plenty of datasets with
complex labels, it is very rare to find such a dataset where
multiple annotations were collected for each item and the
annotator ID is preserved in the data. Without redundancy in
annotations there is no aggregation to perform, and without
annotator ID there is no way to infer annotator ability. In ad-
dition to these requirements, the dataset would need enough
gold annotations to yield reliable testing results. In order to
demonstrate that our methods generalize well to multiple un-
related tasks, we need several diverse complex annotation
datasets that meet the above requirements.

Another challenge is to provide a more complete theoreti-
cal framing to our methods. We believe that a model of anno-
tation distances such as MAS should, under varying configu-
rations, generalize a wide range of crowd annotation models,
including many of the commonly used models for simple la-
bel aggregation. A related goal is to provide a methodology
for converting arbitrary models for simple annotations into
distance-based models that behave identically on the simple
task but can also be used for complex annotations.

Ultimately, we want to address the larger question of
how to facilitate complex annotation collection. Aggrega-
tion modeling is one of the many tools for supporting this
objective, and we hope to investigate how to adapt other
methods from the crowdsourcing literature as well as novel
approaches to challenges specific to complex tasks.
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