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Abstract

Modeling annotators and their labels is use-
ful for ensuring data quality. Though many
models exist for binary or categorical labels,
prior methods do not generalize to complex
annotation tasks (e.g., open-ended text, mul-
tivariate, structured responses) without devis-
ing new models for each specific task. To
obviate the need for task-specific modeling,
we propose to model distances between labels,
rather than the labels themselves. Our method,
a Bayesian hierarchical extension of multidi-
mensional scaling, is agnostic as to the dis-
tance function; we leave it to the annotation
task requester to specify an appropriate dis-
tance function for their task. Evaluation shows
the generality and effectiveness of the model
across two complex annotation tasks: multiple
sequence labeling and syntactic parsing.

1 Motivation

Annotations provide the basis for supervised
learning and evaluation. Given the importance of
annotation, much work has considered models and
measures of annotator behavior and labels (Dawid
and Skene, 1979; Smyth et al., 1995; Artstein and
Poesio, 2008; Passonneau and Carpenter, 2014).
The advent of inexpert crowd annotation (Snow
et al., 2008) has stimulated a surge of further mod-
eling work motivated by quality assurance with in-
expert annotators. However, nearly all existing an-
notation models assume relatively simple labeling
tasks, such as classification or rating.

Not all annotation tasks are so simple. Some
tasks involve open-ended answer spaces (e.g.,
translation, transcription, extraction, generation)
(Bernstein et al., 2010; Li et al., 2016) or struc-
tured responses (e.g., annotating linguistic syntax
or co-reference) (Paun et al., 2018). As methods
for effective crowdsourcing continue to advance,

we are seeing increasingly involved tasks, such
as annotating lists or sequences (Nguyen et al.,
2017), open-ended answers to math problems (Lin
et al., 2012), or even drawings (Ha and Eck, 2017).
Lacking task-independent, general-purpose mod-
els supporting aggregation for such tasks, aggrega-
tion is usually performed by task-specific models
or by relying on additional human computation.
Our goal is to provide a general aggregation model
supporting diverse complex annotation tasks.

We define complex annotations as any kind of
annotation that could not be easily represented as
a categorical variable or single-dimensional ordi-
nal variable. Such tasks often involve a very large
or infinite answer space, such that annotators are
far less likely produce identical labels for the same
item. For example, there can be multiple accept-
able ways to translate a sentence (and even more
incorrect ways). Methods for assessing and ag-
gregating complex annotations ought to be flexible
enough to model relative label similarity between
labels, beyond simple exact match.

2 Background

When annotations are simple categorical vari-
ables, there is a rich literature of general-purpose
and task-independent methods for aggregation.
The most well-known model is from Dawid and
Skene (1979), who provide an unsupervised or
potentially semi-supervised method for inferring
truth from user and item identifiers and labels.
This probabilistic model can be trained via expec-
tation maximization or Bayesian methods (Car-
penter, 2011). The Dawid-Skene model learns
confusion matrices for each user representing that
user’s probability of giving the observed categori-
cal label given the unknown true value. An alter-
native model, ZenCrowd, learns each user’s prob-



ability of providing a correct answer (Demartini
et al., 2012). These methods can be thought of
as weighted voting, and they tend to outperform
simple majority voting (Zheng et al., 2017) Gold
labels are not required, as parameters are learned
through consensus between users.

A common characteristic of aggregation meth-
ods for simple annotations is that they make use of
probabilistic models to explain the collected data.
Probabilistic models for crowd annotations pro-
vide a framework for several useful tools, includ-
ing parameter inference, semi-supervised learn-
ing, and probabilistic task management. For tasks
that collect complex annotations from the crowd,
formulating probabilistic models can be very diffi-
cult because the likelihood functions are not sim-
ple probability distributions. Designing such mod-
els requires both familiarity with the task domain
and skill with mathematics and statistics. Some
examples are a model with a Hidden Markov
Model (HMM) likelihood function that was devel-
oped to aggregate crowd-annotated sequences of
text within documents (Nguyen et al., 2017) and a
Chinese Restaurant Process (CRP) model for short
free-response answers (Lin et al., 2012). Both of
these examples are limited in their applicability to
the type of data they model (time-dependent and
discrete variables, respectively). So far, no model
has been proven effective for diverse complex an-
notation tasks. Our goal is to provide a more flex-
ible option for complex tasks: a general-purpose
and task-independent probabilistic model for ag-
gregating complex annotations.

3 Multidimensional Annotation Scaling

The key idea to obviate the need for task-specific
models is to instead rely on task-specific distance
functions, which are easier to obtain and already
exist for most annotation tasks of interest. As long
as there exists an evaluation metric for comparing
predictions to gold, that same metric could be used
as a distance function.

Once a distance function is selected, the next
step is to produce a distance dataset from the orig-
inal annotation dataset, containing distances Diuv

for users u, v ∈ U and items i ∈ I . This distance
dataset can be used to train a crowd annotation dis-
tance model. This model should grade the quality
of annotations for each item and might also infer
helpful parameters describing user error and item
difficulty. By modeling distances, we can now de-

fine the likelihood for a continuous variable (dis-
tances) rather than for complex objects (annota-
tions). With both observed and inferred variables
now entirely in continuous space, we avoid the
main difficulty in designing probabilistic models
for complex annotations.

Our proposed method for modeling crowd an-
notation distances is inspired by Dawid-Skene
and intended to generalize a wide variety of ag-
gregation models. The idea is to model a K-
dimensional representation space in which the
central point is taken as the estimated true item
value, and annotation embeddings are estimated
around that central point at norms regularized by
expected user error.

In order to compute annotation embeddings, we
devise a probabilistic model based on multidimen-
sional scaling (Mead, 1992). Multidimensional
scaling is a method for estimating coordinates ε
of points given only a matrix of distances between
those points by minimizing an objective function,
generally

∑
(‖εi − εj‖ − Dij)

2. The estimated
coordinate vectors carry meaning not in their ab-
solute direction or magnitude, but rather in their
position relative to each other.

Our model, multidimensional annotation scal-
ing (MAS), is a hierarchical Bayesian probabilis-
tic model with a multidimensional scaling likeli-
hood function, in which the estimated coordinates
serve as annotation embeddings. Instead of the
data populating a single distance matrix, each item
has a separate annotation distance matrix. Also,
because each user may annotate several items, we
leverage the full dataset to compute global pa-
rameters representing annotator reliability, which
serve as priors for the local parameters of each
item’s multidimensional scaling likelihood.

We define the MAS model in Equations (1)-(4)
and illustrate the basic premise in Figure 1.

L̂i = Liu′
i
, u′i = argminu∈U(i)‖εiu‖ (1)

For each item, the model selects an annotation
L̂i as its true value estimator, whose embedding
εiu has the smallest norm out of all the annota-
tions made by the annotators U(i) of that item. In
the MAS model, the origin in embedding space is
taken to represent the true value for an item, so
the norm of ε is understood as its distance from
the truth. Unlike standard multidimensional scal-
ing where the magnitude of the coordinates need
not carry meaning, in our MAS model the magni-



tude of the annotation embeddings represents their
quality. This measure also naturally lends itself to
assigning partial credit to annotations. MAS as-
sumes the annotation embedding space is isotropic
because it does not depend on direction and uni-
modal because there is a single optimal point.

Diuv ∼ N (‖εiu − εiv‖, σ) (2)

Equation 2 is the generalized multidimensional
scaling objective function expressed as a proba-
bilistic likelihood. Maximizing the normal like-
lihood with free scale parameter σ minimizes the
square error between observed distances in the
data and learned distances in the embedding space.

εiu = γuδi
ε̃iu
‖ε̃iu‖

, γu, δi ∈ R+, εiu, ε̃iu ∈ RK (3)

The annotation embeddings ε comprise normal-
ized raw coordinates ε̃ as well as scale param-
eters γ representing user error and δ represent-
ing item difficulty. Normalizing the raw coordi-
nates forces the scale parameters to entirely de-
termine the embeddings’ magnitudes. The model
prefers to fit larger values of the scale parameters
when those users and items are associated with
larger distances in the data. When many anno-
tations have small distances between each other,
the model favors placing them closer to the ori-
gin compared to isolated annotations with higher
distances from the others, thereby rewarding con-
sensus. The model also favors placing annota-
tions made by smaller-γ users closer to the center,
thereby rewarding annotator reliability.

log γu ∼ N (log γ̄,Φ), log δi ∼ N (log δ̄,Ψ) (4)

The parameters γ and δ are given hierarchical
Bayesian priors with global location parameters γ̄
and δ̄ and with configurable scales Φ and Ψ, re-
spectively, which are set to 1 by default. The use of
hierarchical Bayesian modeling reduces arbitrary
choices of hyperparameters by allowing global pa-
rameters to be learned empirically, and it has been
adopted in much of the recent work in label ag-
gregation (Carpenter, 2008; Raykar et al., 2010;
Liu and Wang, 2012). Finally, we arbitrarily set
the last hyperparameter K = 8 (untuned), slightly
more than a typical five annotations per item.

For estimating the parameters of MAS, we spec-
ify the model in the Stan probabilistic program-
ming language (Carpenter et al., 2017). Stan is

(a) Equal-γ annotators (b) Different-γ annotators

Figure 1: Illustration of an item modeled by multidi-
mensional annotation scaling (MAS). The emoji faces
represent annotator labels, bold lines are observed dis-
tances between annotations, the golden circles are in-
ferred true values, and dotted lines show the inferred
magnitude of error for each annotation. When equal
γ are learned for all annotators, the inferred true value
is the geometric center. When different γ values are
learned, the inferred true value is pulled closer to the
more trusted annotators’ labels. γ are learned from the
observed distances over other items not displayed.

equipped with algorithms for computing maxi-
mum a posteriori (MAP) estimates, variational in-
ference, and Markov chain Monte Carlo. Our ex-
periments utilize the fastest method, MAP.

4 Experiments

Our methods support modeling and aggregation
for datasets having three conditions: complex
labels, workers associated with identifiers, and
gold labels to evaluate inferences. Several pub-
lic datasets exist meeting two of those conditions,
but meeting all three is rare. So far, we have con-
ducted experiments on a real dataset meeting these
conditions and a synthetic dataset whose configu-
rations we vary over several experiments.

Real Annotations: Sequences. The largest real
dataset we explore is a collection of 5,000 medi-
cal paper abstracts annotated by Amazon Mechan-
ical Turk workers in (Nguyen et al., 2017). In
this Biomedical Information Extraction (IE) task,
workers annotate text spans describing popula-
tions enrolled in clinical trials.

Synthetic Annotations: Parse Trees. Our
parse tree simulator exploits a set of automatic
parsers such as BLLIP (McClosky et al., 2006),
MaltParser (Nivre et al., 2007), and the Stanford
Parser, (Manning et al., 2014) implemented in
NLTK (Loper and Bird, 2002) to produce multi-
ple candidate parses of varying quality for a set
of sentences drawn randomly from the Brown cor-
pus. For each item, these parses are ordered by de-
creasing quality as measured by their EVALB score
(Sekine and Collins, 1997). Simulated workers are
randomly assigned skill parameters ∈ [0, 1]. They



Experiment Baselines Distance
Dataset Distance ‖U‖ ‖I‖ ‖L‖ RU ZC TMV CHMM MAS Oracle
Parse Trees EVALB 30 50 300 0.879 0.877 - - 0.929 0.965

10 50 300 0.873 0.876 - - 0.913 0.975
30 25 150 0.867 0.872 - - 0.889 0.959
10 25 150 0.866 0.865 - - 0.896 0.976

Sequences F1 91 191 1165 0.563 0.558 0.647 0.697 0.691 0.824

Table 1: Results. Metrics vary by task; larger is always better. The best result in each row is bolded. Lesser results
whose difference is not statistically significant at the 0.05 level are indicated by underlining. The number of users
‖U‖, number of workers ‖I‖, and number of annotations ‖L‖ vary.

are each given a random set of sentences, and their
annotations are stochastically selected from the or-
dered list of candidate parses according to a geo-
metric probability distribution, so that higher-skill
workers tend to produce higher-quality parses.

Baselines. Our experiments compare our pro-
posed method against several baselines includ-
ing selection of a random user’s annotation
(RU) and the use of an oracle (OR) that selects
the performance-maximizing annotations. We
also compare against ZenCrowd, which mod-
els each worker’s probability of providing correct
labels and effectively performs weighted voting.
For the sequences dataset, we additionally com-
pare against the proposed Crowd-HMM method
(CHMM) and simplest baseline token-wise major-
ity vote (TMV) from Nguyen et al. (2017).

Results and Discussion. Table 1 displays re-
sults. In all experiments, MAS outperforms the
other general aggregation methods by a wide mar-
gin. For the sequence annotation task, MAS out-
performs TMV, which itself is still much better
than RU. The CHMM probabilistic model specific
to sequence annotation achieved the highest score,
but there was no statistically significant difference
vs. our task-agnostic MAS model. In principle,
customized models for specific tasks should per-
form better than general-purpose alternatives, but
at the cost of greater complexity and additional
time and expertise to design. Benchmarking stud-
ies on aggregation for simpler annotation tasks
(Zheng et al., 2017) have also shown that such off-
the-shelf solutions are often remarkably competi-
tive in practice vs. more customized models.

The question for requesters, then, is how much
added benefit a custom model may deliver as
return-on-investment vs. using an off-the-shelf,
task-agnostic model such as MAS? It is also worth
framing MAS in the context of two extremes: the
cheapest option – only collecting one annotation
per item (i.e., RU) – and the most expensive op-
tion – designing a custom probabilistic annotation

model (e.g., CHMM) or custom human computa-
tion workflow for each new annotation task.

Across evaluation tasks, the learned ZC model
performs nearly identically to RU. The likely
culprit for ZC’s lackluster performance is the
large label space of complex annotation (Sec-
tion 1), leading to poor annotator accuracy esti-
mates for weighted voting. While we evaluate ZC
specifically, its results are likely indicative of a
larger family of existing, similar annotation mod-
els which estimate annotator reliability based on
exact match between labels (Zheng et al., 2017).

5 Conclusion

Our MAS method bypasses the challenge of hav-
ing to define task-specific probabilistic models for
each new type of complex annotation by instead
modeling the distances between annotations. Re-
sults on two complex tasks – sequence labeling
and syntactic parsing – show improvement over
general baselines and comparable performance
to a task-specific probabilistic model for the se-
quence task. MAS thus appears to be useful, both
for practical adoption and as a baseline against
which new, bespoke annotation models for com-
plex annotation tasks can be benchmarked.

One idea for future work is to extend our model
to support complex tasks without assuming the an-
notation space is isotropic and unimodal (Section
3). This could extend MAS beyond objective tasks
to also support subjective tasks (Tian and Zhu,
2012) having a space of valid responses which is
wider and more uneven. Embedding scores pro-
duced by MAS could be used to identify a set of
valid labels rather than a single best annotation.
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