ASE 2024 Most Influential Paper (MIP) Talk TE)(AS
The University of Texas at Austin
Improving Bug
Localization using
Structured Retrieval

Ripon Saha, Matthew Lease, Sarfraz Khurshid, Dewayne Perry [ASE 2013]

Ripon Saha Sarfraz Khurshid
Meta The University of Texas at Austin

@ TEXAS WHAT STARTS HERE CHANGES THE WORLD

The University of Texas at Austin

Dr. Ripon Saha Prof. Matt Lease Prof. Sarfraz Khurshid Prof. Dewayne Perry

@ TEXA.S WHAT STARTS HERE CHANGES THE WORLD
The University of Texas at Austin

Background

a In 2013, global cost of software | Source
: Code Files
debugging was $312/year Documents G
A Average time to fix a bug is 6
months in both commercial and ‘ - —
open-source projects -
A Spectrum-based fault localization - a
was common L

A The exploration of Information Bug Report

Retrieval (IR)-based bug - » Q
| | Query .
localization had started and shown . —

to hold promise

A general IR system

) TEXAS

WHAT STARTS HERE CHANGES THE WORLD

‘The University of Texas at Austin

Prior work: Structured Retrieval (1/2)

First ACM international conference on Digital libraries, 1996

)] Index Structures for Structured Documents *

ick for
dates

Yong Kyu Lee, Seong-Joon Yoo, Kyoungro Yoon
School of Computer and Information Science
Syracuse University

P. Bruce Berra
Dept. of Electrical and Computer Engineering
Syracuse University

Abstract

Much research has been carried out in order to man-
age structured documents such as SGML documents
and to provide powerful query facilities which exploit
document structures as well as document contents. In
order to perform structure queries efficiently in a struc-
tured document management system, an index struc-

logical structure of documents such as chapters, sec-
tions, or subsections. The structure query can be com-
bined with the content query to build a more powerful
query.

Much research has been performed to design efficient
index structures for database and information retrieval
systems [7] [10] [11] [12] [14] [24] [25]. In order to
perform structure queries efficiently in the structured

CHANGES THE WORLD

Prior work: Structured Retrieval (2/2)

Computer networks and ISDN systems, 1998 - Elsevier
The Anatomy of a Large-Scale Hypertextual
Web Search Engine

Sergey Brin and Lawrence Page

Computer Science Department,
Stanford University, Stanford, CA 94305, USA
sergey@cs.stanford.edu and page@cs.stanford.edu

Abstract
In this paper, we present Google, a prototype of a large-scale search engine which makes heavy
use of the structure present in hypertext. Google is designed to crawl and index the Web efficiently

and produce much more j heavy use of the structure . The prototype with a full

text and hyperlink databas . ://google.stanford.edu/
To engine?r)a search engi present in hypertext tgc)nsgto I%undreds of
millions of web pages involving a comparable number of distinct terms. They answer tens of
millions of queries every day. Despite the importance of large-scale search engines on the web,
verv little academic research has been done on them. Furthermore. due to ranid advance in

TEXAS WHAT STARTS HERE CHANGES THE WORLD

‘The University of Texas at Austin

Idea: Code has structure!

Source code file: ConsoleView.java

Bug ID: 80720 public class ConsoleView extends PageBookView
Summary: Pinned console does not remain on top implements IConsoleView, IConsoleListener {...
Description: Open two console views, ... Pin one public void display(IConsole console) {

console. Launch another program that produces if (fPinned && fActiveConsole != null){return;}
output. Both consoles display the last launch. The b

pinned console should remain pinned. public void pin(IConsole console) {

if (console == null) {
setPinned(false);
}else {
if (isPinned()) {
setPinned(false);
}
display(console);
setPinned(true); ..

)
Both bug report and document have rich structure!

TEXAS WHAT STARTS HERE CHANGES THE WORLD

‘The University of Texas at Austin

Idea: Constructs Hold Valuable Info

Source code file: ConsoleView.java
public class ConsoleView extends PageBookView
implements IConsoleView, IConsoleListener {...

Bug ID: 80720
Summary: Pinned console does not remain on

top.)) public void display(IConsole console) {
Description: Open two console views, ... Pin one if (fPinned && fActiveConsole = null){return:}
console. Launch another program that produces }...
output. Both consoles display the last launch. The public void pin(IConsole console) {
pinned console should remain pinned. if (console == null) {
setPinned(false);
} else {

if (isPinned()) {

Figure: A real bug report from Eclipse)
setPinned(false);

Project and the corresponding fixed source

code [Zhou et al., ICSE 2012] L lay(le)
isplay(console);

setPinned(true);

}

Higher level of program constructs have more important information

@ TEX.AS WHAT STARTS HERE CHANGES THE WORLD

‘The University of Texas at Austin

Our System Architecture

b s] l
: class !
F:::::::::i
. method |
AST i
Source Code e =ssssssssss! Structured
Files i variable i Documents
Zzcszzzszss
Parameters Structured
(k1, b) Retrieval
- - FESTSSESETESSS |
| summary | _ List of
Bug EEssssraras Queries Ranked Files
Reports i description i

@ TEXAS WHAT STARTS HERE CHANGES THE WORLD
at Austin

The University of Texas

Improvement from Leveraging Structure

1 1

@ No
0.8 7

0.8

0.6

SWT Eclipse

0.4+

0.2

0 - 4
Top 1 Top 5 Top 10 MAP MRR Top 1 Top 5 Top 10 MAP MRR

0.8

Aspect) ZXing

Top 1 Top 5 Top 10 MAP MRR Top1 Top 5 Top 10 MAP MRR

@ T X.A.S WHAT STARTS HERE CHANGES THE WORLD

The University of Texas at Austin

Titles from all Citing Papers

projects
level localizing prioritization .
. modeling
recommendation test

prediction search

localization = retieva ...

i - embedding t
history retrieval-based based Iearning I systems
space

mode| Mining program l Ig spectrum changes 1,00y

structured ranking

approach data

feature improved files apps

framework ir-based fault study engineering
support bijas automated au using deep Word
RS software 0V ining 1s5ue
enhancing o reports riodele combining
empirical . text feall function
report via api ecnniques o .
traceability iexs q . information
machine Y COde ek
: metho)
novel towards change improving analysis i location
classification defect semantic

research

TEX.A.S WHAT STARTS HERE CHANGES THE WORLD

‘The University of Texas at Austin

Impact: SE Areas Influenced

Areas # Citations Conferences/Journal # Citations

Fault Localization 234 TSE 27
Other Bug Related 99 ICSE 26
IR in SE 15 arXiv 25
Recommendation 14 ASE 19
Tests 12 IST 14
Security 11 JSS 13
Feature Location, API, Program | 20 FSE 10
Repair

Non-SE: AAAI, USENIX, S&P, ICDM etc.

@ TEXAS

‘The University of Texas at Austin

WHAT STARTS HERE CHANGES THE WORLD

Impact from Proposed Future Work

In our future research, we would like to explore the
following areas to further improve our model: bug report
summarization and learning parameters.

Bug Report Summarization. In this paper, we showed how
the performance of bug localization improves by focusing on
condensed information such as bug summaries, class names, or
method names. However, we still used exactly the same long
bug descriptions from bug reports. There are some automatic
techniques [22] that can condense bug descriptions up to 30%
of its original size. Such summarized bug descriptions may
further improve the performance of bug localization.

12018

Improving IR-Based Bug Localization with Context-Aware
Query Reformulation

Mohammad Masudur Rahman
University of Saskatchewan
Saskatoon, Canada
masud.rahman@usask.ca
ABSTRACT

Recent findings suggest that Information Retrieval (IR)-based bug
localization techniques do not perform well if the bug report lacks

rich structured information (e.g., relevant program entity names).

Chanchal K. Roy
University of Saskatchewan
Saskatoon, Canada
chanchal.roy@usask.ca

three steps of debugging is the identification of the location of a bug
in the source code, i.e., bug localization [37, 56]. Recent bug local-
ization techniques can be classified into two broad families-spectra
based and information retrieval (IR) based [29]. While spectra-based
technlques rely on execution traces of a software system, IR-based

Conversely, excessive structured information (e.g., stack traces) in
the bug report might not always help the lization ei-

thar Tn thic nanar wa nrannca a naval tachnica_RT 177 ARN_ that

analyse shared vocabulary between a bug report (ie.,
query) and the proiect source for bug localization [34, 661. Perfor-

Soft Computing (2021) 25:7307-7323
https://doi.org/10.1007/500500-021-05689-2

(
\o
Check for
updates

On the classification of bug reports to improve bug localization

22 Mnh
| I

Fan Fang' - John Wu' - Yanyan Li' - Xin Ye' - Wajdi Aljed: d Wiem M (o)

Accepted: 11 February 2021/ Published online: 19 March 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
Bug localization is the automated process of finding the possible faulty files in a software project. Bug localization allows

@ TEXAS

‘The University of Texas at Austin

WHAT STARTS HERE CHANGES THE WORLD

Impact from Proposed Future Work

Learning to Rank. To tune the value of k; and b in our
model, we ran BLUIR on Aspect] using a range of values
at a fixed interval length and took the pair for which we
got the best result for other subject systems. However, the
best values may be different for different subject systems.
Finding a globally optimal weights is still an open problem
in IR research community. Recent work [20] in IR is using
machine learning methods to automatically optimize ranking
parameters for more sophisticated ranking functions. This
would provide another interesting direction for future studies.

Learning to Rank Relevant Files for Bug Reports using
Domain Knowledge

Xin Ye, Razvan Bunescu, and Chang Liu
School of Electrical Engineering and Computer Science, Ohio University
Athens, Ohio 45701, USA
xy348709,bunescu,liuc@ohio.edu

ABSTRACT

‘When a new bug report is received, developers usually need
to reproduce the bug and perform code reviews to find the
cause, a process that can be tedious and time consuming. A
tool for ranking all the source files of a project with respect
to how likely they are to contain the cause of the bug would
enable developers to narrow down their search and poten-
tially could lead to a substantial increase in productivity.
This paper introduces an adaptive ranking approach that
leverages domain knowledge through functional decomposi-
tions of source code files into methods, API descriptions of
library components used in the code, the bug-fixing history,
and the code change history. Given a bug report, the ranking
score of each source file is computed as a weighted combi-
nation of an array of features encoding domain knowledge,
where the weights are trained automatically on previously
solved bug reports using a learning-to-rank technique. We
evaluated our system on six large scale open source Java
projects, using the before-fix version of the project for every
bug report. The experimental results show that the newly
introduced learning-to-rank approach significantly outper-
forms two recent state-of-the-art methods in recommending
relevant files for bug reports. In particular, our method
makes correct recommendations within the top 10 ranked
source files for over 70% of the bug reports in the Eclipse
Platform and Tomcat projects.

Categories and Subject Descriptors

Keywords

bug reports, software maintenance, learning to rank

1. INTRODUCTION AND MOTIVATION

A software bug or defect is a coding mistake that may
cause unintended and unexpected behaviors of the software
component [7]. Upon discovering an abnormal behavior of
the software project, a developer or a user will report it
in a document, called a bug report or issue report. A bug
report provides information that could help in fixing a bug,
with the overall aim of improving the software quality. A
large number of bug reports could be opened during the
development life-cycle of a software product. For example,
there were 3,389 bug reports created for the Eclipse Platform
product in 2013 alone. In a software team, bug reports are
extensively used by both managers and developers in their
daily development process [10].

A developer who is assigned a bug report usually needs
to reproduce the abnormal behavior [22] and perform code
reviews [2] in order to find the cause. However, the diversity
and uneven quality of bug reports can make this process
nontrivial. Essential information is often missing from a bug
report [6]. Lexical mismatches between natural language
statements in bug reports and technical terms in software
systems [4] limit the accuracy of ranking methods that are
based on simple lexical matching scores. To locate the bug,
a developer needs to not only analyze the bug report using
their domain knowledge, but also collect information from
neer develoners and nsers. Emnlovine such a mannal nrocess

@ TEXAS WHAT STARTS HERE CHANGES THE WORLD
Austin

The University of Texas at

Christopher Manning, SIGIR 2016 Talk

Hype Cycle for Emerging Technologies, 2023 Ne ura I m Ode I S h ave tra n SfO rmed
IR & NLP fields since our work

Expectations

gartner.com Onal et al. Neural Information Retrieval: At the End of the
Gartner. Early Years. Information Retrieval, 21(2-3), 2018.

TEXAS ANGES THE WORLD

‘The University of Texas at Austin

Trends in 2024 (1/2)

AGENTFL: Scaling LLM-based Fault Localization
to Project-Level Context

Yihao Qin*, Shangwen Wang*, Yiling Lou', Jinhao Dong?, Kaixin Wang', Xiaoling Li*, Xiaoguang Mao*,
*National University of Defense Technology, China,
{yihaoqin, wangshangwen13, lixiaoling, xgmao} @nudt.edu.cn
Fudan University, China, {yilinglou@, kxwang23@m.}fudan.edu.cn
tPeking University, China, dongjinhao@stu.pku.edu.cn

Abstract—Fault Localization (FL) is an essential step during leverage GNN models to learn useful features. Several state-of-
the debugging process. With the strong capabilities of code the-art techniques have also suggested incorporating auxiliary
comprehension, the recent Large Language Models (LLMS) ;. .t rmatinn cneh ac ~ode complexity and code history, and

have demonstrated promising performa : : :
in the code. Nevertheless, due to LLV Test Behavior Tracking, features of such information with
in handling long contexts, existing LLM Document-Guided Search, and dels [8], [10].

remains on localizing bugs within a s .arge Language Models (LLMs) has

Multi-Round Dialogue

TEXAS

‘The University of Texas at Austin

Trends in 2024 (2/2)

AGENTLESS &
Demystifying LLM-based Software Engineering Agents

WHAT STARTS HERE CHANGES THE WORLD

Chungqiu Steven Xia* Yinlin Deng* Soren Dunn

Lingming Zhang

University of Illinois Urbana-Champaign X

{chunqiu2, yinlind2, sorend2, lingming}@illinois.edu

60 —
el
2
2
&
IS

40 —

33.2%
28.8% 20,27 28.4%
2E2% 227% o . 23%
207 16% 14.4% wan | 15.2% e
l . I l -
© T T T T . T
Agentless AutoCodeRover Moatless Tools Aider SWE-Agent
Scaffolds

Source: https://openai.com/index/introducing-swe-bench-verified/

@ TEXA.S WHAT STARTS HERE CHANGES THE WORLD
The University of Texas at Austin

Thank you!

Study data still available today
e https://mattlease.com/data/ASE2013-BLUIR-Detailed-Results.zip

ASE 2013 PC led by Tevfik Bultan and Andreas Zeller
ASE 2024 MIP Award Committee led by Myra Cohen and Lars Grunske

Special thanks to Darko Marinov and Lingming Zhang for insightful
comments and discussions

Our research was supported in part by NSF Grants SHF-1117902,
SRS-0820251, CCF-0845628, and a Temple Fellowship.

https://mattlease.com/data/ASE2013-BLUiR-Detailed-Results.zip

& TEXAS WHAT STARTS HERE CHANGES THE WORLD
‘The University of Texas at Austin

Lesson: look beyond your primary area

Take (research-focused) courses in other areas/fields

* Product of Saha taking Lease’s “Information Retrieval” class
e Other examples
— Vasic took Soloveichik’s “Unconventional Computing”
class, and defined a novel link between traditional CS
and synthetic biology [DNA'20 =, PNAS’'22]
— Ray took Khurshid's "V&V” class, and defined effective
testing of SSL/TLS certificate validation [Oakland’14 =]

Collaborate across different research groups
Attend talks in different areas

The University of Texas at Austin

A few more lessons learned

TA-ing can help with research

* Helping others understand improves the depth of your own
understanding

« Basic material from a class you TA can open new research
directions

Persevere

« Getting (some) papers rejected is inevitable
« Read the reviews in a positive frame of mind
* Improve the work and re-submit

